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Classification problem

Classification: assign a label (or category, class) to an
observation based on its features

X input space (e.g. RY); V: output space (e.g. {1,2,...,K})
e 1 € X feature vector, input, data point...

y € V: label, category, class...

Classifier: a mapping f: X — Y

given the features x

Classification

Goal: construct a classifier f that accurately predicts the label y
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MNIST dataset
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e Input: 28x28 gray scale (1 channel) images, i.e., X

R784

-, 9})

{0,1,..

e Output: digits 0 through 9 (i.e., Y
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CIFAR datasets
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e Input: 32 x 32 RGB color (3 channels) images, i.e.,
X = R32%32x3 4 R3072

e Output: 10 classes (airplanes, cars, birds, cats, deer, dogs, frogs,
horses, ships, and trucks) or 100 classes

Classification
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ImageNet dataset
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e Input: varies, often high-resolution (often 224 x 224 x 3)
e Output: 1000 different categories
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Mathematical set-up

e Modeling assumption: the data (input-output pairs) come from

an underlying data distribution p over X x )

e Training data: (x1,y1),---, (Tn,Yn) iid. p

e Error metric: for any given classifier f, its risk, defined as the
average (expected) classification error on a new data is

R(f) = Px,y)np(f(X) #Y)

e Supervised learning: build a classifier f based on training data,
that makes the average classification error as small as possible

Classification
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Questions

e Does there exists a “best” classifier?
— this lecture

e Can we construct this "best” classifier with the information of p?
— this lecture

e What can we do when we only have a finite number of training
data?
— next few weeks
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Bayes optimal classifier: binary case

e Consider the binary case: ) = {0,1}
e Define the Bayes classifier: for any x € X,

f(z) = {1’ fP(Y =1|X=2)>2P(Y =0| X =ux),

0, otherwise.

Theorem 2.1 (Bayes optimal classifier: binary case)

The Bayes classifier f* minimizes the misclassification error, i.e.,

f* € argmin P(x y),(f(X) #Y).
fiX=Y

Classification
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Proof of Theorem 2.1

We need to show that, for any classifier f: & — ),

R(f) =P(f(X) #Y) = P(f*(X) #Y) = R(f")

By tower property,

P(f(X)#Y) =E [Lyx)2v]
=Ex [E [Lrx)zy | X]] (tower property)
=Ex [P(f(X)#Y [ X)]
>Ex [P(f*(X)#Y | X)]  (why?)
=Ex [E [Lf(x)»v | X]]
=E []lf*(X);gy] (tower property)
—B(f(X) £ ).

It suffices to check
Pf(X)£Y | X)2P(fF(X)#Y | X).
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Proof of Theorem 2.1 (cont.)

Observe that

) [Py =0]|X) fPY=1]|X)>
P(f(X)#Y|X)_{]p(Y:1|X) ifPY=1|X)>

=min{P(Y =1|X),PY =0 X)}

and
_JPY =0]X) if f(X)=1
P(f(X)#YlX)—{P(Y:HX) T o
zmin{IP’(Y:HX), (Y:O|X)}.
Therefore

P(fA(X) #Y | X) 2 P(f(X) #Y | X).
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A few remarks

Bayes optimal classifier

(@) I, fPY=1|X=2)>2PY =0]| X =2x),
x) =
0, otherwise.
e Depends on the true underlying data distribution p
e The optimal classifier might not be unique
e When X is discrete, it is equivalent to

1, fP(X=2,Y=1)>PX =2z =0),

0, otherwise.
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Bayes risk: binary case

Bayes risk:
R* = P(X,Y)Np(f*(X) #Y)

The Bayes risk serves as a lower bound for the classification error
that any practical classifier can achieve:

R = fr)r(uny Pix vy~ (f( ) #Y).

It represents the inherent uncertainty in the classification
problem due to overlapping distributions of the classes.

Excess risk: R(f) — R*

Classification 2-12



Bayes optimal classifier: multiclass setting

e Consider the multiclass case: Y = {1,...,K}
e Define the Bayes classifier: for any = € X,

ff(x) =argmaxP(Y =y | X =)
yey

Theorem 2.2 (Bayes optimal classifier: multiclass case)

The Bayes classifier f* minimizes the misclassification error, i.e.,

J* € argmin Pryy)p(f(X) #Y).
[:X=Y

Classification
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Bayes optimal classifier: multiclass setting

e Consider the multiclass case: Y = {1,...,K}

e Define the Bayes classifier: for any = € X,

ff(x) =argmaxP(Y =y | X =)
yey

Theorem 2.2 (Bayes optimal classifier: multiclass case)

The Bayes classifier f* minimizes the misclassification error, i.e.,

J* € argmin Pryy)p(f(X) #Y).
[:X=Y

Proof: similar to Theorem 2.1, it suffices to check for any classifier f

PA(X) Y [ X) 2P (f*(X)#Y [ X).
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More general loss function?

e Consider more general loss function £: Y x Y — R

e Define the risk for a classifier f: X — ) as

Ro(f) = Ex,y)mpll(f(X),Y)]

e Example: with 0-1 loss ¢(y,y") = 1{y # '}, we recover the
average classification error

R(f) = Px,y)mp(f(X) #Y)

e Goal: find f that minimizes the risk R,(f) (the Bayes classifier
might not be optimal...)

Question: Can you think of settings where other types of loss
functions are more appropriate than the 0-1 loss?
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Example: traffic signs

NO
PARKING

_—

e ) = {stop sign, 50 mph, 40 mph}.
e Predicting 50 mph when it is actually a stop sign is worse than
predicting 40 mph when it is actually 50mph.

e (-1 loss is not suitable here...
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Example: traffic signs

NO
PARKING

—_—

e ) = {stop sign, 50 mph, 40 mph}.
e Predicting 50 mph when it is actually a stop sign is worse than
predicting 40 mph when it is actually 50mph.

e (-1 loss is not suitable here...

We will discuss classification with general loss later if time permits J
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Supervised learning

e Go back to 0-1 loss

e In practice, we don't know p. It is in general impossible to
compute the Bayes classifier f*

e Goal: build a classifier f: X — ) based on training data
(@1,91)s -5 (Tny Yn) e P

e Hope: achieve small excess risk R(f) — R*

e High-level framework:

o Make some modeling assumptions on p
o Design a good classifier f under this setup
o For example, a good classifier may satisfy

R(f) = R* < h(n)

where h(n) is a function of the sample size n describing the rate
of convergence, e.g., h(n) = O(1/n).
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Linear Methods for Classification



Linear classifiers

e Linear classifiers: decision boundaries are linear hyperplanes

o Hyperplane Hg g, = {& € R? : (B,x) + By = 0}
o Half planes cut by Hg g,:

Hgﬁo ={xcR?: (B,z) + By > 0},
Hgp, =1z € R : (B, x) + By < 0}.

o Example: in the binary case, the linear classifier has the form

flx)=1{z € Hgﬁo}

e Three approaches to learn a linear classifier from the data:

o Linear discriminant analysis (LDA)
o Logistic regression
o Perceptrons and Support vector machines (SVMs)

Classification
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Linear discriminant analysis (LDA)

e Model set-up: X =R% Y ={1,...,K}. Fork=1,...,K,

where wy > 0, Zszl we =1, up, €RY, T € Si
e The Bayes classifier under this setup: for any @, compute

_ 1 _
O(x) = B g — S B e+ log

x log P(Y =k | X=x)+constant

Let f*(x) = arg maxj<p<x Ok().
e Issue: model parameters are unknown...

Classification
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Plug-in approach

Plug-in approach: replace the unknown parameters with reliable estimates

Suppose we have i.i.d. data (x1,91),..., (Tn, Yn) RS p
Foreach 1 < k < K, let n, = Z?,l 1{y; = k} and

~ ng
E wla W = —
n

iyi=
e Estimate the covariance matrix
i)
“N_-K g
k=14y,=

Replace py, wi, X with fig, Ok, )

~

S R
Sp(x) =x'% 1#1«—5#;2 T, + log Wy

linear in @
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Generalization

e Consider a more general set-up: for k =1,..., K, assume
]P’(Y:k:):wk, X|Y:]€NN(uk,2k,)

where wy, > 0, Zé(:l wr =1, ux € Rd, i € Si

e This setup will lead to the so-called quadratic discriminant
analysis (QDA)

e Homework: derive QDA

o What is the Bayes classifier under this setup?
o How to derive a practical (data-driven) classifier?
o Is this still a linear classifier?
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Logistic regression

e Model set-up: X =R%, Y ={0,1,...,K}. Let

exp(Bg  + o)

1+ S5 exp(BlLx + o)
1

K )
1+ 30—y exp(B® + Bok)

where the parameters 3, € RY, o, € Rfork=1,..., K

P(Y =k | x)= (1<k<K),

P(Y =0 | z)=

Classification
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Logistic regression

e Model set-up: X =R% x {1}, ¥ =1{0,1,...,K}. Let

.
P(Y =k | z) = e’;p(ﬁk@ —.  (k=1...K),
L+ 3 o exp(By )
1
P(Y =0 | @) = - —,
I+ Zk':1 eXP(/@}g/m)
where the parameters B, € R for k=1,..., K

e Bayes classifier:

Fx) = argmaxlSkSKﬁ;—w, if maxi<p<g ﬁ,;ra: >0,
0, otherwise.

o Estimate (3)'s: maximum likelihood estimation (MLE)
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Maximum likelihood estimation

e Suppose we have i.i.d. data (x1,y1), .-, (Tn, Yn)

The negative Iog—likelihood function

:_fz Z Tlgk+%Zlog —|—Zexp

k liy;= i=1 k'=1

Maximum likelihood estimation (MLE)

B = arg mﬁin (B3)

Convex optimization: solve by e.g., gradient descent

Bt = gt —nvi(8Y) (t=0,1,...)

Classification

L Bi)]

2-23



A brief introduction to gradient descent

Gradient descent (GD) for solving mingera L(3):

Bt =p"—VL(B)  (t=0,1,..)
When 7 is properly small, GD satisfy the following properties:

e For smooth function L, GD is a descent algorithm: L(3'*1) < L(B")

e For convex + smooth function L, GD satisfies
L(B") - L(B*) <O (M) (t=0,1,...)
for any minimizer B*
e For strongly convex + smooth function L, GD satisfies
1B =B 2 < (L =r)[B° =B (t=0,1,...)

for some k € (0,1), where B8* is the unique minimizer

Classification
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Stochastic gradient descent

Consider the following empirical risk minimization problem

min L(3 x;)
min Zg B
where x,...,x, are training data points.

e Stochastic gradient descent: for t =0,1,...,
Bt = 8" —nVg(Blix;,) where ;, " Unif{x1,...,@n}
e Gradient descent: fort =0,1,...,
pitt =g —VL(B') = 8" - n% En: Vy(B;x:i)
i=1

e Advantage of SGD: much faster updates, especially for large datasets,
but still enjoys nice properties (sometimes even better than GD!)
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Gradient descent methods

Example: GD / SGD for logistic regresion

Take-away: (stochastic) gradient descent is the default method for
solving unconstrained optimization problem
— simple and effective!

Recommended reading materials: Lecture 1 and 10 of the course

Large-Scale Optimization for Data Science

by Prof. Yuxin Chen (UPenn); Lecture on GD and SGD
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https://yuxinchen2020.github.io/large_scale_optimization/lectures/grad_descent_unconstrained.pdf
https://yuxinchen2020.github.io/large_scale_optimization/lectures/stochastic_gradient.pdf

Perceptrons and SVMs



Linearly separable data

e Consider binary classification: X =R% and Y = {1, -1}

e Training data: (x1,y1),. .., (Tn,Yn)

e Linearly separable data: 3 a separating hyperplane Hg g, s.t.
yi- (@ B+pB)>0 (i=1,...,n)

Classification
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Linearly separable data

Consider binary classification: X = R% and Y = {1, -1}

Training data: (x1,v1),...,(Tn,Yn)

Linearly separable data: 3 a separating hyperplane Hg g, s.t.
yi (@] B+B) >0 (i=1,...,n)

by merging 3y into B and adding 1 to x;'s, this assumption
becomes: 3 Bsep € R

yi-a:;r,Bsep>0 (i=1,...,n)

Classification
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Linearly separable data

Consider binary classification: X = R% and Y = {1, -1}

Training data: (x1,v1),...,(Tn,Yn)

Linearly separable data: 3 a separating hyperplane Hg g, s.t.
yi (@] B+B) >0 (i=1,...,n)

by merging 3y into B and adding 1 to x;'s, this assumption
becomes: 3 Bsep € R

yi-a:;r,Bsep>0 (i=1,...,n)

Goal: search a separating hyperplane indexed by B
yi-m;r,@>0 (i=1,...,n)

(note that Beep is not known a priori)
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Perceptron Learning Algorithm

o For every B € R¥*!, define the set Mg ={i:y;- a:;rﬁ <0}

. misclassified points
e Target: minimize the perceptron loss

a(B) = — Z yi -z B ox Z dist(x;, Hg)

iEMpg icEMp
where Hg = {z : 23 = 0}
o Algorithm: initialize with 3° € R4+ for t =0, 1,..., update

Bt = B' + nyixz;, for a random i € Mg

where 17 > 0 is the step size; in fact, we can take n =1 here...

Classification
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Perceptron Learning Algorithm

For every 3 € R, define the set Mg ={i:y;- a:;rﬁ <0}

misclassified points

e Target: minimize the perceptron loss

a(B) = — Z yi -z B ox Z dist(x;, Hg)

iEMpg iEMpg
where Hg = {z : "3 = 0}
o Algorithm: initialize with 3° € R4+ for t =0, 1,..., update
Bt = B' + y;x;, for a random i € Mgt
o Interpretation: SGD with step size 1 (kind of...)

Classification



Convergence theory

Theorem 2.3

When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.
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Convergence theory

Theorem 2.3

When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:

e solutions not unique: might converge to an unstable hyperplane
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Convergence theory

Theorem 2.3

When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:

e solutions not unique: might converge to an unstable hyperplane
— resort to “optimal separating hyperplane”
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Convergence theory

Theorem 2.3

When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:

e solutions not unique: might converge to an unstable hyperplane
— resort to “optimal separating hyperplane”

e only works linearly separable data. If the classes cannot be
separated by a hyperplane, the algorithm will not converge
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Convergence theory

Theorem 2.3

When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:

e solutions not unique: might converge to an unstable hyperplane
— resort to “optimal separating hyperplane”

e only works linearly separable data. If the classes cannot be
separated by a hyperplane, the algorithm will not converge

e the “finite” number of steps can be very large

Classification 2-30



Optimal separating hyperplane

From now on, we “unmerge” By from 3, as they play different roles.
Consider the optimization problem

max M st oy B+G) =M (i=1,...n
18ll2=1,50,M yi(z; B+ Po) ( )

Classification
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Optimal separating hyperplane

From now on, we “unmerge” 3y from 3, as they play different roles.
Consider the optimization problem

max M st y(x/B+B)>M (i=1,...,n)
IBll2=1,B0,M

Implications:

o the distance between x and the hyperplane Hg g, is

187z + fo| +Bo\ i [8lla=1

T

diSt(.’B, Hﬁﬂo) =
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Optimal separating hyperplane

From now on, we “unmerge” By from 3, as they play different roles.
Consider the optimization problem

max M st oy B+G) =M (i=1,...n
18ll2=1,50,M yi(z; B+ Po) ( )

Implications:
e the distance between = and the hyperplane Hg 5, is |3 = + S|
e offers a unique solution that maximizes the margin M

e Margin: the distance between Hg g, and the closest data points from
each class support vectors
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Optimal separating hyperplane

From now on, we “unmerge” By from 3, as they play different roles.
Consider the optimization problem

max M st oy B+G) =M (i=1,...n
18ll2=1,50,M yi(z; B+ Po) ( )

Implications:
e the distance between = and the hyperplane Hg 5, is |3 = + S|
e offers a unique solution that maximizes the margin M

e Margin: the distance between Hg g, and the closest data points from
each class support vectors

e Intuition: a large margin on the training data will lead to good separation
on the test data.
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Reformulation as convex optimization

e Original problem:

"y M st yi(z{ B+ >M (i=1,...,n
18]12=1,80,M yi(z] B+ Bo) ( )

e Issue: this is not a convex optimization problem...

Classification
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Reformulation as convex optimization

e Original problem:

"y M st gz B+ >M (i=1,...,n
18]12=1,80,M yi(z] B+ Bo) ( )

e Issue: this is not a convex optimization problem...

o Reformulation:
min B3 st @ B+F) =1 (i=1,....n)
120

this is a convex optimization problem

Classification
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Reformulation as convex optimization

Original problem:

"y M st gz B+ >M (i=1,...,n
18]12=1,80,M yi(z] B+ Bo) ( )

Issue: this is not a convex optimization problem...

Reformulation:

min B3 st @ B+F) =1 (i=1,....n)
P20

this is a convex optimization problem

This is known as the support vector machine (SVM)
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SVMs for separable data

1 _
min  — |83 st wi(®/B+B)>1 (i=1,...,n)
B.Bo 2

SVM is a powerful method for binary classification

e finds a linear classifier with decision boundary {@ : T3 + 3 = 0} to
separate two classes with the maximum margin

This is only feasible for linearly separated data
— can be generalized to accommodate non-separable data

What can we say about SVM?
— resort to duality theory!

Classification 2-33



Convex optimization and duality theory



Primal problem and Lagrangian function

Consider a convex optimization problem:

min f(x) st g(x) <0 (i=1,...,m).
zcR4

where f(x) and g;(x) are convex functions

This is called the primal problem
e To handle the constraints, we introduce Lagrange multipliers \;

e The Lagrangian function is:

L(z,A) = f(z) + Z Aigi(x)

What is the benefit of introducing the Lagrangian function?

Classification



The Dual Problem

Key observation:

min f(x) 9 1nin max L(z,\) > maxmin L(z,A) = max d(A)
x:g(x)<0 T A>0 A>0 = A>0
—_——— —

primal problem

relation (i) and (ii) always holds (why?)

relation (ii) is often an equality (strong duality theory)
The dual function d(A) = ming L(x, )

The dual problem is to maximize the dual function d(\):

e )

Classification
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Strong and Weak Duality

Weak Duality: For any x feasible in the primal and any A > 0, we have:

d(X) < f(x)

Strong Duality: If the problem satisfies certain conditions (e.g., Slater’s
condition), then:
i = d(A
glafea” () = 25 AV

e Slater’s condition: the feasible region has an interior point, i.e.,
Jxg €RY st gi(xo) <0 (i=1,...,m).

e In convex optimization, strong duality often holds, meaning the primal
and dual problems have the same optimal value.

Classification



KKT Conditions

The Karush-Kuhn-Tucker (KKT) conditions: if strong duality holds, and
(x, A) is the optimal solution pair for the primal/dual problem

poin @) = maxd(A),
primal problem  dual problem
then
e Primal feasibility: ¢;(x) <0
e Dual feasibility: \; >0
e Complementary slackness: \;g;(x) =0
e Stationarity: Vf(z) + > .~ \iVgi(z) =0

— This is a necessary condition!
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Back to SVMs

. 1 )
min -85 st w(z/B+B)>1 (i=1,...,n)
B.Bo 2

e The dual problem for SVM is (why?):
n
max Zal - = ZZaZaJytyjm T; s.t Zaiyi =0,0;, >0
=1 j=1 =1

e |t is straightforward to check that Slater's condition holds
— primal and dual problems are equivalent!

e The dual problem is a quadratic programming problem, which is easier to
compute with standard software (e.g. CVX)
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Checking KKT conditions

. 1 .
(P) min f||5||§ s.t. yi(:c;-rﬁ—i—ﬂo) >1 (i=1,...,n)
B,Bo 2

(D) max iai — %iiaiajyiyj:c;wj s.t. iaiyi =0,0; >0
i=1 i=1 j=1 i=1
The Karush-Kuhn-Tucker (KKT) conditions for optimality:
e Primal feasibility: y;(3"z; + ) > 1
e Dual feasibility: a; >0
e Complementary slackness: «o;[y;(8"z; + 30) —1] =0

e Stationarity: 3 =" | oyx;
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Implications

For any optimal solution pair (3%, 8§, o*):

e Support vectors: data points x; with a; > 0

v(B T+ 8 >1 = =0
>0 = y(B Tz +p)=1

e Recovering the primal solution: after solving the dual problem (i.e.,
finding o), we can recover the primal solution (8*, 35) by

n

* *

B8 :§ Q; Yidg
i=1

and 35 = y; — BT x; for any support vector x;

— [3* is a linear combination of the support vectors
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Accommodating non-separable data

SVM for linearly separable data:

1 _
min - [|B3 st wi(®/B+B)>1 (i=1,...,n)
B.Bo 2

e For non-separable data, we introduce slack variables &; > 0 to allow
violations of the margin:

min, f||5||2 +CY &
B.Bo, =1

st. (B zi+B)>1-6& &>0 (i=1,....n)

e (' > 0is the “cost” parameter

e the separable case corresponds to C' = oo

Classification
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Dual problem: non-separable data

e Primal problem:

2
_ + C i
ﬁmﬁn}& 2||5|| E &

sty (87 fBH—ﬁo)Zl—fu §&>0 (i=1,...,n)

e Dual problem:

max Zaz ZZQ ajylyja: T;

11]1

Zaiyizo, 0<o;<C (i=1,...,n)

e Homework: derive the dual problem from the primal problem

Classification

2-43



Dual problem: non-separable data

e Primal problem:

2
_ + C i
ﬁmﬁn}& 2||5|| E &

sty (87 fBH—ﬁo)Zl—fu §&>0 (i=1,...,n)

e Dual problem:

max Zaz ZZQ ajylyja: T;

11]1

Zaiyizo, 0<o;<C (i=1,...,n)

e Homework: derive the dual problem from the primal problem

Classification
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Kernel density classifier and naive Bayes classifier



Recap: Bayes optimal classifier

Bayes optimal classifier: for any x € X, output

f () =argmax P(Y =y | X = x)
yeY

e |ssue: depends on unknown data distribution p

Classification

2-46



Recap: Bayes optimal classifier

Bayes optimal classifier: for any x € X, output

f () =argmax P(Y =y | X = x)
yeY

e |ssue: depends on unknown data distribution p

e Bayes formula:
PX =z|Y =y PY =y)
Yy PX =z |Y =y)PY =vy)

— Is it possible to estimate these quantities?

PY =y| X =2) =
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Recap: Bayes optimal classifier

Bayes optimal classifier: for any z € X, output

f ) =argmax P(Y =y | X = x)
yeY

e |ssue: depends on unknown data distribution p

e Bayes formula:
PX =z Y:ny\’Y:y
P —y| X =)= ==Y =P =)
YyeyPX =z |Y =y)PY =y)

— Is it possible to estimate these quantities?

e Plug-in method:

o marginal probabilities P(Y = y) are easy to estimate (use frequency)
o key difficulty: estimate conditional densities P(X =z | Y = y)
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Detour: density estimation



Setup: density estimation

e Target: an unknown density function f
e What we have: i.i.d. data X1,..., X, ~ f

~

e Goal: construct a good density estimation f(-)
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Setup: density estimation

Target: an unknown density function f

What we have: i.i.d. data Xq,..., X, ~ f

~

Goal: construct a good density estimation f(-)

Criteria: mean integrated squared error (MISE)

WiSE(f) = 5| [ (7o) - 7)) s
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Setup: density estimation

Target: an unknown density function f

What we have: i.i.d. data Xq,..., X, ~ f

~

Goal: construct a good density estimation f(-)

Criteria: mean integrated squared error (MISE)
WiSE(f) = 5| [ (7o) - 7)) s

Density estimation: find fwith as small MISE as possible

o Histogram method
o Kernel density estimation
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Bias-variance tradeoff

Mean integrated squared error (MISE):
MISE(f) :EU (f(z) = f())*da

e Bias: Measures how far the estimated density is from the true density on
average.

b(x) = E[f(z)] — f(z)

e Variance: Measures how much p(z) fluctuates around its mean:

~ ~ ~

v(x) = var(f(x)) = E[(f(x) — E[f(2)])’]
Theorem 2.4
MISE(f) = / b?(z)dz + /.v(x)dx
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Histograms

Consider 1D setting, and assume that f(-) is supported on [0, 1]
— we can always rescale the data to [0, 1]

Histogram method: estimate the density by partitioning the interval and
counting the frequency of data points in each partition

The data is divided into m bins of equal width h = 1/m (bandwidth)

1 1 2 —1
Bl|:07>7 B2|:7>a 7Bm|:m 71:|
m m m m

Each bin is assigned a probability proportional to the number of
observations falling into that bin:

ﬁl/h7 MRS Bl7 n

N 1

flz)y={ : where  p; = — > 1{X; € B;}.
Pm/h, x € By, =t
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Optimal bandwidth

Theorem 2.5 (informal)

Under some regularity conditions, we have

MISE(f) / F(u

e The optimal bandwidth choice is

e | 6 1/3
- nl/3 (ff'(U)zdu>

o With this choice of h*, we have

MISE(f) ~ ¢ where C = (%)2/3(/f’(u)2d

n2/3
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Cross-validation

Issue: the optimal bandwidth A* depends on the unknown density f

Idea: estimate the risk under each bandwidth selection A

L(h) = / (Flw) — f(a))*de = / () -2 / Foysns+ [ Feaa

=:J(h)

Cross-validation estimate of the risk:

Ty = [ Pade - 23" Foo ()

~

It can be shown that J(h) = E[J(z)]

~

Cross validation: select h that minimizes J(h)
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Cross-validation

e [ssue: the optimal bandwidth h* depends on the unknown density f

o Idea: estimate the risk under each bandwidth selection h

L(h) = / (Flw) — f(a))*de = / () -2 / Foysns+ [ Feaa

=:J(h)

e Cross-validation estimate of the risk:

Ty = [ Pade - 23" Foo ()

~

e It can be shown that J(h) = E[J(z)]

~

e Cross validation: select i that minimizes J(h)

e HW: prove the formula below that allows efficient computation of J(h):
~ 2 n+1 e~
J(h) = - :
(h) (n—1)h n-1 Pi

j=1
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Limitation of the histogram method

Histograms are discontinuous (not a continuous density)
e The convergence rate O(n~2/3) is not ideal

Complicated in higher dimension (number of bins will be exponential in
dimension)

A better solution: kernel density estimation
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