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Classification problem

• Classification: assign a label (or category, class) to an
observation based on its features

• X : input space (e.g. Rd); Y: output space (e.g. {1, 2, . . . , K})
• x ∈ X : feature vector, input, data point...
• y ∈ Y: label, category, class...
• Classifier: a mapping f : X → Y
• Goal: construct a classifier f that accurately predicts the label y

given the features x
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MNIST dataset

• Input: 28x28 gray scale (1 channel) images, i.e., X = R28×28 or
R784

• Output: digits 0 through 9 (i.e., Y = {0, 1, . . . , 9})
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CIFAR datasets

• Input: 32 × 32 RGB color (3 channels) images, i.e.,
X = R32×32×3 or R3072

• Output: 10 classes (airplanes, cars, birds, cats, deer, dogs, frogs,
horses, ships, and trucks) or 100 classes
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ImageNet dataset

• Input: varies, often high-resolution (often 224 × 224 × 3)
• Output: 1000 different categories
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Mathematical set-up

• Modeling assumption: the data (input-output pairs) come from
an underlying data distribution ρ over X × Y

• Training data: (x1, y1), . . . , (xn, yn) i.i.d.∼ ρ

• Error metric: for any given classifier f , its risk, defined as the
average (expected) classification error on a new data is

R(f) := P(X,Y )∼ρ(f(X) ̸= Y )

• Supervised learning: build a classifier f based on training data,
that makes the average classification error as small as possible
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Questions

• Does there exists a “best” classifier?
— this lecture

• Can we construct this “best” classifier with the information of ρ?
— this lecture

• What can we do when we only have a finite number of training
data?

— next few weeks
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Bayes optimal classifier: binary case

• Consider the binary case: Y = {0, 1}
• Define the Bayes classifier: for any x ∈ X ,

f⋆(x) :=
{

1, if P(Y = 1 | X = x) ≥ P(Y = 0 | X = x),
0, otherwise.

Theorem 2.1 (Bayes optimal classifier: binary case)
The Bayes classifier f⋆ minimizes the misclassification error, i.e.,

f⋆ ∈ arg min
f :X →Y

P(X,Y )∼ρ(f(X) ̸= Y ).
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Proof of Theorem 2.1
We need to show that, for any classifier f : X → Y,

R(f) = P(f(X) ̸= Y ) ≥ P(f⋆(X) ̸= Y ) = R(f⋆)

By tower property,

P(f(X) ̸= Y ) = E
[
1f(X )̸=Y

]
= EX

[
E

[
1f(X )̸=Y | X

]]
(tower property)

= EX [P (f(X) ̸= Y | X)]
≥ EX [P (f⋆(X) ̸= Y | X)] (why?)
= EX

[
E

[
1f⋆(X )̸=Y | X

]]
= E

[
1f⋆(X )̸=Y

]
(tower property)

= P(f⋆(X) ̸= Y ).

It suffices to check

P (f(X) ̸= Y | X) ≥ P (f⋆(X) ̸= Y | X) .
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Proof of Theorem 2.1 (cont.)

Observe that

P(f⋆(X) ̸= Y | X) =
{
P(Y = 0 | X) if P(Y = 1 | X) ≥ P(Y = 0 | X)
P(Y = 1 | X) if P(Y = 1 | X) ≥ P(Y = 0 | X)

= min
{
P(Y = 1 | X),P(Y = 0 | X)

}
and

P(f(X) ̸= Y | X) =
{
P(Y = 0 | X) if f(X) = 1
P(Y = 1 | X) if f(X) = 0

≥ min
{
P(Y = 1 | X),P(Y = 0 | X)

}
.

Therefore
P(f⋆(X) ̸= Y | X) ≥ P(f(X) ̸= Y | X).

Classification 2-10



A few remarks

Bayes optimal classifier

f⋆(x) :=
{

1, if P(Y = 1 | X = x) ≥ P(Y = 0 | X = x),
0, otherwise.

• Depends on the true underlying data distribution ρ

• The optimal classifier might not be unique
• When X is discrete, it is equivalent to

f⋆(x) :=
{

1, if P(X = x, Y = 1) ≥ P(X = x, Y = 0),
0, otherwise.
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Bayes risk: binary case

• Bayes risk:
R⋆ := P(X,Y )∼ρ(f⋆(X) ̸= Y )

• The Bayes risk serves as a lower bound for the classification error
that any practical classifier can achieve:

R⋆ = min
f :X →Y

P(X,Y )∼ρ(f(X) ̸= Y ).

• It represents the inherent uncertainty in the classification
problem due to overlapping distributions of the classes.

• Excess risk: R(f) − R⋆
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Bayes optimal classifier: multiclass setting

• Consider the multiclass case: Y = {1, . . . , K}
• Define the Bayes classifier: for any x ∈ X ,

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

Theorem 2.2 (Bayes optimal classifier: multiclass case)
The Bayes classifier f⋆ minimizes the misclassification error, i.e.,

f⋆ ∈ arg min
f :X →Y

P(X,Y )∼ρ(f(X) ̸= Y ).

Proof: similar to Theorem 2.1, it suffices to check for any classifier f

P (f(X) ̸= Y | X) ≥ P (f⋆(X) ̸= Y | X) .
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More general loss function?

• Consider more general loss function ℓ : Y × Y → R
• Define the risk for a classifier f : X → Y as

Rℓ(f) := E(X,Y )∼ρ[ℓ(f(X), Y )]

• Example: with 0-1 loss ℓ(y, y′) = 1{y ̸= y′}, we recover the
average classification error

R(f) = P(X,Y )∼ρ(f(X) ̸= Y )

• Goal: find f that minimizes the risk Rℓ(f) (the Bayes classifier
might not be optimal...)

Question: Can you think of settings where other types of loss
functions are more appropriate than the 0-1 loss?
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Example: traffic signs

• Y = {stop sign, 50 mph, 40 mph}.
• Predicting 50 mph when it is actually a stop sign is worse than

predicting 40 mph when it is actually 50mph.
• 0-1 loss is not suitable here...

We will discuss classification with general loss later if time permits
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Supervised learning

• Go back to 0-1 loss
• In practice, we don’t know ρ. It is in general impossible to

compute the Bayes classifier f⋆

• Goal: build a classifier f : X → Y based on training data
(x1, y1), . . . , (xn, yn) i.i.d.∼ ρ

• Hope: achieve small excess risk R(f) − R⋆

• High-level framework:
◦ Make some modeling assumptions on ρ
◦ Design a good classifier f under this setup
◦ For example, a good classifier may satisfy

R(f) − R⋆ ≤ h(n)

where h(n) is a function of the sample size n describing the rate
of convergence, e.g., h(n) = O(1/n).
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Linear Methods for Classification



Linear classifiers

• Linear classifiers: decision boundaries are linear hyperplanes
◦ Hyperplane Hβ,β0 = {x ∈ Rd : ⟨β,x⟩ + β0 = 0}
◦ Half planes cut by Hβ,β0 :

H+
β,β0

= {x ∈ Rd : ⟨β,x⟩ + β0 ≥ 0},

H−
β,β0

= {x ∈ Rd : ⟨β,x⟩ + β0 < 0}.

◦ Example: in the binary case, the linear classifier has the form

f(x) = 1{x ∈ H+
β,β0

}

• Three approaches to learn a linear classifier from the data:
◦ Linear discriminant analysis (LDA)
◦ Logistic regression
◦ Perceptrons and Support vector machines (SVMs)
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Linear discriminant analysis (LDA)

• Model set-up: X = Rd, Y = {1, . . . , K}. For k = 1, . . . , K,

P(Y = k) = ωk, X | Y = k ∼ N (µk,Σ)

where ωk ≥ 0,
∑K

k=1 ωk = 1, µk ∈ Rd, Σ ∈ Sd
+

• The Bayes classifier under this setup: for any x, compute

δk(x) := x⊤Σ−1µk − 1
2µ

⊤
k Σ

−1µk + log ωk︸ ︷︷ ︸
∝ log P(Y =k | X=x)+constant

.

Let f⋆(x) = arg max1≤k≤K δk(x).
• Issue: model parameters are unknown...
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Plug-in approach

• Plug-in approach: replace the unknown parameters with reliable estimates

• Suppose we have i.i.d. data (x1, y1), . . . , (xn, yn) i.i.d.∼ ρ

• For each 1 ≤ k ≤ K, let nk =
∑n

i=1 1{yi = k} and

µ̂k = 1
nk

∑
i:yi=k

xi, ω̂k = nk

n

• Estimate the covariance matrix

Σ̂ = 1
N − K

K∑
k=1

∑
i:yi=k

(
xi − µ̂k

)(
xi − µ̂k

)⊤

• Replace µk, ωk, Σ with µ̂k, ω̂k, Σ̂

δ̂k(x) := x⊤Σ̂−1µ̂k − 1
2 µ̂

⊤
k Σ̂−1µ̂k + log ω̂k︸ ︷︷ ︸

linear in x

.
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Generalization

• Consider a more general set-up: for k = 1, . . . , K, assume

P(Y = k) = ωk, X | Y = k ∼ N (µk,Σk)

where ωk ≥ 0,
∑K

k=1 ωk = 1, µk ∈ Rd, Σk ∈ Sd
+

• This setup will lead to the so-called quadratic discriminant
analysis (QDA)

• Homework: derive QDA
◦ What is the Bayes classifier under this setup?
◦ How to derive a practical (data-driven) classifier?
◦ Is this still a linear classifier?
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Logistic regression

• Model set-up: X = Rd, Y = {0, 1, . . . , K}. Let

P(Y = k | x) = exp(β⊤
k x + β0,k)

1 +
∑K

k′=1 exp(β⊤
k′x + β0,k′)

, (1 ≤ k ≤ K),

P(Y = 0 | x) = 1
1 +

∑K
k′=1 exp(β⊤

k′x + β0,k)
,

where the parameters βk ∈ Rd, β0,k ∈ R for k = 1, . . . , K

• Model set-up: X = Rd × {1}, Y = {0, 1, . . . , K}. Let

P(Y = k | x) = exp(β⊤
k x)

1 +
∑K

k′=1 exp(β⊤
k′x)

, (k = 1, . . . , K),

P(Y = 0 | x) = 1
1 +

∑K
k′=1 exp(β⊤

k′x)
,

where the parameters βk ∈ Rd+1 for k = 1, . . . , K

• Bayes classifier:

f(x) =
{

argmax1≤k≤Kβ⊤
k x, if max1≤k≤K β⊤

k x > 0,

0, otherwise.

• Estimate βk’s: maximum likelihood estimation (MLE)

Classification 2-22



Logistic regression

• Model set-up: X = Rd, Y = {0, 1, . . . , K}. Let

P(Y = k | x) = exp(β⊤
k x + β0,k)

1 +
∑K

k′=1 exp(β⊤
k′x + β0,k′)

, (1 ≤ k ≤ K),

P(Y = 0 | x) = 1
1 +

∑K
k′=1 exp(β⊤

k′x + β0,k)
,

where the parameters βk ∈ Rd, β0,k ∈ R for k = 1, . . . , K

• Model set-up: X = Rd × {1}, Y = {0, 1, . . . , K}. Let

P(Y = k | x) = exp(β⊤
k x)

1 +
∑K

k′=1 exp(β⊤
k′x)

, (k = 1, . . . , K),

P(Y = 0 | x) = 1
1 +

∑K
k′=1 exp(β⊤

k′x)
,

where the parameters βk ∈ Rd+1 for k = 1, . . . , K

• Bayes classifier:

f(x) =
{

argmax1≤k≤Kβ⊤
k x, if max1≤k≤K β⊤

k x > 0,

0, otherwise.

• Estimate βk’s: maximum likelihood estimation (MLE)

Classification 2-22



Maximum likelihood estimation

• Suppose we have i.i.d. data (x1, y1), . . . , (xn, yn)
• The negative log-likelihood function

ℓ(β) = − 1
n

K∑
k=1

∑
i:yi=k

x⊤
i βk + 1

n

n∑
i=1

log
[
1 +

K∑
k′=1

exp(x⊤
i βk′)

]
• Maximum likelihood estimation (MLE)

β̂ := arg min
β

ℓ(β)

• Convex optimization: solve by e.g., gradient descent

βt+1 = βt − η∇ℓ(βt) (t = 0, 1, . . .)
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A brief introduction to gradient descent

Gradient descent (GD) for solving minβ∈Rd L(β):

βt+1 = βt − η∇L(βt) (t = 0, 1, . . .)

When η is properly small, GD satisfy the following properties:

• For smooth function L, GD is a descent algorithm: L(βt+1) ≤ L(βt)

• For convex + smooth function L, GD satisfies

L(βt) − L(β⋆) ≤ O

(
∥β0 − β⋆∥2

2
t

)
(t = 0, 1, . . .)

for any minimizer β⋆

• For strongly convex + smooth function L, GD satisfies
∥βt+1 − β⋆∥2 ≤ (1 − κ)t∥β0 − β⋆∥2 (t = 0, 1, . . .)

for some κ ∈ (0, 1), where β⋆ is the unique minimizer
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Stochastic gradient descent

Consider the following empirical risk minimization problem

min
β∈Rd

L(β) := 1
n

n∑
i=1

g(β;xi),

where x1, . . . ,xn are training data points.

• Stochastic gradient descent: for t = 0, 1, . . . ,

βt+1 = βt − η∇g(βt;xit
) where xit

ind.∼ Unif{x1, . . . ,xn}

• Gradient descent: for t = 0, 1, . . . ,

βt+1 = βt − η∇L(βt) = βt − η
1
n

n∑
i=1

∇g(β;xi)

• Advantage of SGD: much faster updates, especially for large datasets,
but still enjoys nice properties (sometimes even better than GD!)
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Gradient descent methods

Example: GD / SGD for logistic regresion

Take-away: (stochastic) gradient descent is the default method for
solving unconstrained optimization problem

— simple and effective!

Recommended reading materials: Lecture 1 and 10 of the course

Large-Scale Optimization for Data Science

by Prof. Yuxin Chen (UPenn); Lecture on GD and SGD
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Perceptrons and SVMs



Linearly separable data

• Consider binary classification: X = Rd and Y = {1, −1}

• Training data: (x1, y1), . . . , (xn, yn)

• Linearly separable data: ∃ a separating hyperplane Hβ,β0 s.t.
yi · (x⊤

i β + β0) > 0 (i = 1, . . . , n)

• by merging β0 into β and adding 1 to xi’s, this assumption
becomes: ∃βsep ∈ Rd+1

yi · x⊤
i βsep > 0 (i = 1, . . . , n)

• Goal: search a separating hyperplane indexed by β̂

yi · x⊤
i β̂ > 0 (i = 1, . . . , n)

(note that βsep is not known a priori)
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Perceptron Learning Algorithm

• For every β ∈ Rd+1, define the set Mβ := {i : yi · x⊤
i β ≤ 0}︸ ︷︷ ︸

misclassified points• Target: minimize the perceptron loss

σ(β) := −
∑

i∈Mβ

yi · x⊤
i β ∝

∑
i∈Mβ

dist(xi, Hβ)

where Hβ = {x : x⊤β = 0}

• Algorithm: initialize with β0 ∈ Rd+1, for t = 0, 1, . . . , update

βt+1 = βt + ηyixi, for a random i ∈ Mβt

where η > 0 is the step size; in fact, we can take η = 1 here...

• Interpretation: SGD with step size 1 (kind of...)
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Convergence theory

Theorem 2.3
When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:

• solutions not unique: might converge to an unstable hyperplane
— resort to “optimal separating hyperplane”

• only works linearly separable data. If the classes cannot be
separated by a hyperplane, the algorithm will not converge

• the “finite” number of steps can be very large
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Optimal separating hyperplane

From now on, we “unmerge” β0 from β, as they play different roles.
Consider the optimization problem

max
∥β∥2=1,β0,M

M s.t. yi(x⊤
i β + β0) ≥ M (i = 1, . . . , n)

Implications:

• the distance between x and the hyperplane Hβ,β0 is

• offers a unique solution that maximizes the margin M

• Margin: the distance between Hβ,β0 and the closest data points︸ ︷︷ ︸
support vectors

from
each class

• Intuition: a large margin on the training data will lead to good separation
on the test data.
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Reformulation as convex optimization

• Original problem:

max
∥β∥2=1,β0,M

M s.t. yi(x⊤
i β + β0) ≥ M (i = 1, . . . , n)

• Issue: this is not a convex optimization problem...

• Reformulation:

min
β,β0

∥β∥2
2 s.t. yi(x⊤

i β + β0) ≥ 1 (i = 1, . . . , n)

this is a convex optimization problem

• This is known as the support vector machine (SVM)
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i β + β0) ≥ 1 (i = 1, . . . , n)

this is a convex optimization problem

• This is known as the support vector machine (SVM)
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SVMs for separable data

min
β,β0

1
2∥β∥2

2 s.t. yi(x⊤
i β + β0) ≥ 1 (i = 1, . . . , n)

• SVM is a powerful method for binary classification

• finds a linear classifier with decision boundary {x : x⊤β̂ + β̂0 = 0} to
separate two classes with the maximum margin

• This is only feasible for linearly separated data
— can be generalized to accommodate non-separable data

• What can we say about SVM?
— resort to duality theory!
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Convex optimization and duality theory



Primal problem and Lagrangian function

• Consider a convex optimization problem:

min
x∈Rd

f(x) s.t. gi(x) ≤ 0 (i = 1, . . . , m).

where f(x) and gi(x) are convex functions

• This is called the primal problem

• To handle the constraints, we introduce Lagrange multipliers λi

• The Lagrangian function is:

L(x,λ) = f(x) +
m∑

i=1
λigi(x)

• What is the benefit of introducing the Lagrangian function?
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The Dual Problem

Key observation:

min
x:g(x)≤0

f(x)︸ ︷︷ ︸
primal problem

(i)= min
x

max
λ≥0

L(x,λ)
(ii)
≥ max

λ≥0
min
x

L(x,λ)︸ ︷︷ ︸
=:d(λ)

= max
λ≥0

d(λ)︸ ︷︷ ︸
dual problem

• relation (i) and (ii) always holds (why?)

• relation (ii) is often an equality (strong duality theory)

• The dual function d(λ) = minx L(x,λ)

• The dual problem is to maximize the dual function d(λ):

max
λ≥0

d(λ)
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Strong and Weak Duality

Weak Duality: For any x feasible in the primal and any λ ≥ 0, we have:

d(λ) ≤ f(x)

Strong Duality: If the problem satisfies certain conditions (e.g., Slater’s
condition), then:

min
x:g(x)≤0

f(x) = max
λ≥0

d(λ)

• Slater’s condition: the feasible region has an interior point, i.e.,

∃x0 ∈ Rd s.t. gi(x0) < 0 (i = 1, . . . , m).

• In convex optimization, strong duality often holds, meaning the primal
and dual problems have the same optimal value.
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KKT Conditions

The Karush-Kuhn-Tucker (KKT) conditions: if strong duality holds, and
(x,λ) is the optimal solution pair for the primal/dual problem

min
x:g(x)≤0

f(x)︸ ︷︷ ︸
primal problem

= max
λ≥0

d(λ)︸ ︷︷ ︸
dual problem

,

then

• Primal feasibility: gi(x) ≤ 0

• Dual feasibility: λi ≥ 0

• Complementary slackness: λigi(x) = 0

• Stationarity: ∇f(x) +
∑m

i=1 λi∇gi(x) = 0

— This is a necessary condition!
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Back to SVMs

min
β,β0

1
2∥β∥2

2 s.t. yi(x⊤
i β + β0) ≥ 1 (i = 1, . . . , n)

• The dual problem for SVM is (why?):

max
α

n∑
i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
⊤
i xj s.t.

n∑
i=1

αiyi = 0, αi ≥ 0

• It is straightforward to check that Slater’s condition holds
— primal and dual problems are equivalent!

• The dual problem is a quadratic programming problem, which is easier to
compute with standard software (e.g. CVX)
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Checking KKT conditions

(P) min
β,β0

1
2∥β∥2

2 s.t. yi(x⊤
i β + β0) ≥ 1 (i = 1, . . . , n)

(D) max
α

n∑
i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
⊤
i xj s.t.

n∑
i=1

αiyi = 0, αi ≥ 0

The Karush-Kuhn-Tucker (KKT) conditions for optimality:

• Primal feasibility: yi(β⊤xi + β0) ≥ 1

• Dual feasibility: αi ≥ 0

• Complementary slackness: αi[yi(β⊤xi + β0) − 1] = 0

• Stationarity: β =
∑n

i=1 αiyixi
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Implications

For any optimal solution pair (β⋆, β⋆
0 , α⋆):

• Support vectors: data points xi with αi > 0

yi(β⋆⊤xi + β⋆
0) > 1 =⇒ αi = 0
αi > 0 =⇒ yi(β⋆⊤xi + β⋆

0) = 1

• Recovering the primal solution: after solving the dual problem (i.e.,
finding α⋆

i ), we can recover the primal solution (β⋆, β⋆
0) by

β⋆ =
n∑

i=1
α⋆

i yixi

and β⋆
0 = yi − β⊤xi for any support vector xi

— β⋆ is a linear combination of the support vectors
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Accommodating non-separable data

SVM for linearly separable data:

min
β,β0

1
2∥β∥2

2 s.t. yi(x⊤
i β + β0) ≥ 1 (i = 1, . . . , n)

• For non-separable data, we introduce slack variables ξi ≥ 0 to allow
violations of the margin:

min
β,β0,ξ

1
2∥β∥2 + C

n∑
i=1

ξi

s.t. yi(β⊤xi + β0) ≥ 1 − ξi, ξi ≥ 0 (i = 1, . . . , n)

• C > 0 is the “cost” parameter

• the separable case corresponds to C = ∞
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Dual problem: non-separable data

• Primal problem:

min
β,β0,ξ

1
2∥β∥2 + C

n∑
i=1

ξi

s.t. yi(β⊤xi + β0) ≥ 1 − ξi, ξi ≥ 0 (i = 1, . . . , n)

• Dual problem:

max
α

n∑
i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
⊤
i xj

s.t.
n∑

i=1
αiyi = 0, 0 ≤ αi ≤ C (i = 1, . . . , n)

• Homework: derive the dual problem from the primal problem
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Dual problem: non-separable data

• Primal problem:

min
β,β0,ξ

1
2∥β∥2 + C

n∑
i=1

ξi

s.t. yi(β⊤xi + β0) ≥ 1 − ξi, ξi ≥ 0 (i = 1, . . . , n)

• Dual problem:

max
α

n∑
i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
⊤
i xj

s.t.
n∑

i=1
αiyi = 0, 0 ≤ αi ≤ C (i = 1, . . . , n)

• Homework: derive the dual problem from the primal problem
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Kernel density classifier and naive Bayes classifier



Recap: Bayes optimal classifier

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

• Issue: depends on unknown data distribution ρ

• Bayes formula:

P(Y = y | X = x) = (X = x | Y = y) (Y = y)∑
y′∈Y(X = x | Y = y′) (Y = y′)

— Is it possible to estimate these quantities?
• Plug-in method:

◦ marginal probabilities P(Y = y) are easy to estimate (use frequency)
◦ key difficulty: estimate conditional densities P(X = x | Y = y)
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Recap: Bayes optimal classifier

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

• Issue: depends on unknown data distribution ρ

• Bayes formula:

P(Y = y | X = x) = P̂(X = x | Y = y) P̂(Y = y)∑
y′∈Y P̂(X = x | Y = y′) P̂(Y = y′)

— Is it possible to estimate these quantities?
• Plug-in method:

◦ marginal probabilities P(Y = y) are easy to estimate (use frequency)
◦ key difficulty: estimate conditional densities P(X = x | Y = y)
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Detour: density estimation



Setup: density estimation

• Target: an unknown density function f

• What we have: i.i.d. data X1, . . . , Xn ∼ f

• Goal: construct a good density estimation f̂(·)

• Criteria: mean integrated squared error (MISE)

MISE(f̂) = E
[ ∫ (

f̂(x) − f(x)
)2

dx

]

• Density estimation: find f̂ with as small MISE as possible
◦ Histogram method
◦ Kernel density estimation
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Bias-variance tradeoff

Mean integrated squared error (MISE):

MISE(f̂) = E
[ ∫ (

f̂(x) − f(x)
)2

dx

]
• Bias: Measures how far the estimated density is from the true density on

average.
b(x) := E[f̂(x)] − f(x)

• Variance: Measures how much p̂(x) fluctuates around its mean:

v(x) := var(f̂(x)) = E[(f̂(x) − E[f̂(x)])2]

Theorem 2.4

MISE(f̂) =
∫

b2(x)dx +
∫

v(x)dx
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Histograms

• Consider 1D setting, and assume that f(·) is supported on [0, 1]
— we can always rescale the data to [0, 1]

• Histogram method: estimate the density by partitioning the interval and
counting the frequency of data points in each partition

• The data is divided into m bins of equal width h = 1/m (bandwidth)

B1 =
[
0,

1
m

)
, B2 =

[
1
m

,
2
m

)
, . . . , Bm =

[
m − 1

m
, 1

]
• Each bin is assigned a probability proportional to the number of

observations falling into that bin:

f̂(x) :=


p̂1/h, x ∈ B1,

...
...

p̂m/h, x ∈ Bm,

where p̂j = 1
n

n∑
i=1

1{Xi ∈ Bj}.
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Optimal bandwidth

Theorem 2.5 (informal)
Under some regularity conditions, we have

MISE(f̂) ≈ h2

12

∫
f ′(u)2du + 1

nh

• The optimal bandwidth choice is

h⋆ = 1
n1/3

(
6∫

f ′(u)2du

)1/3

• With this choice of h⋆, we have

MISE(f̂) ≈ C

n2/3 where C =
(3

4

)2/3( ∫
f ′(u)2du

)1/3
.
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Cross-validation

• Issue: the optimal bandwidth h⋆ depends on the unknown density f

• Idea: estimate the risk under each bandwidth selection h

L(h) :=
∫ (

f̂(x) − f(x)
)2dx =

∫
f̂2(x)dx − 2

∫
f̂(x)f(x)dx︸ ︷︷ ︸

=:J(h)

+
∫

f2(x)dx

• Cross-validation estimate of the risk:

Ĵ(h) :=
∫

f̂2(x)dx − 2
n

n∑
i=1

f̂(−i)(Xi)

• It can be shown that Ĵ(h) ≈ E[J(x)]

• Cross validation: select h that minimizes Ĵ(h)

• HW: prove the formula below that allows efficient computation of Ĵ(h):

Ĵ(h) = 2
(n − 1)h − n + 1

n − 1

m∑
j=1

p̂2
j
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Limitation of the histogram method

• Histograms are discontinuous (not a continuous density)

• The convergence rate O(n−2/3) is not ideal

• Complicated in higher dimension (number of bins will be exponential in
dimension)

• A better solution: kernel density estimation
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