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Tree-based methods



Classification tree
South African heart disease data: ”0”=”Yes, Disease”, ”1”=”No”
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Classification tree

Setup: X = Rd, Y = {1, . . . , K}, training data (X1, Y1), . . . , (Xn, Yn)
Idea: grow a tree to recursively partition the feature space into a set of
rectangles, and do a simple majority vote in each rectangle

• Each node represents a rectangle in the feature space. The root node is
the feature space X = Rd

• Each node is either a leaf (no children) or a parent (has two children)
• The left and right children comes from a partition of their parent node
• Suppose we have a collection of final partitioned regions associated with

the leaves at the bottom of the tree, denoted by R1, . . . , RM

• For any input x, suppose that x ∈ Rj , then this classification tree returns

f̂(x) = arg max
k∈Y

∑
Xi∈Rj

1{Yi = k}

i.e., the predicted label is the majority in the region Rj
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How to grow a classification tree?

In order to grow a classification tree, we need to ask:

1. How to split each parent node?

2. How large should we grow the tree?

For the first question: minimizing impurity

• Suppose that the parent node is associated with a rectangle R

• Choose a covariate Xj and a split point t that minimizes the impurity

• Let the rectangles associated with its left and right children be
R1(j, t) = {X ∈ R : Xj ≤ t} and R2(j, t) = {X ∈ R : Xj > t},

For the second question: set some stopping criteria.

• For example, we may fix some number n0, and we might stop partition a
node when its associated rectangle has fewer than n0 training data points.
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Impurity function

Let R be the node to be split into two regions. We choose

arg min
j,t

|R1(j, t)|
|R|

γ(R1(j, t)) + |R2(j, t)|
|R|

γ(R2(j, t))︸ ︷︷ ︸
impurity function

,

• Here γ(R) measures the “variance” of the labels of data in R: we want
{Yi : Xi ∈ R} to have low variability

• For any given rectangle R, let

pk = 1
|R|

∑
Xi∈R

1{Yi = k}, 1 ≤ k ≤ K.

Two common choice of the function γ(·):
◦ Gini index: γ(R) =

∑
k pk(1− pk)

◦ Cross entropy: γ(R) = −
∑
k pk log pk
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Insights

• advantage: the tree structure provides great interpretability
◦ for example, it allows reasoning about the cause of diseases

• disadvantage: instability due to the use of greedy search:
◦ splitting process is greedy
◦ small changes in the training data can lead to significantly different

tree structures

• Solutions:
◦ Regularization: controlling tree growth parameters
◦ Pruning: removing branches that do not provide significant

predictive power
◦ Ensemble Methods: use bagging to create a random forest
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Bootstrap aggregating (Bagging)

• Training data Zn = {(Xi, Yi), 1 ≤ i ≤ n}

• Bootstrap sample Z(∗b) = {(X(∗b)
i , Y

(∗b)
i ), 1 ≤ i ≤ n}: sample n data

points randomly from Zn with replacement
• Apply the learning algorithm to the bootstrap sample for B times, and

produce outcomes f̂b

• Majority vote: f̂bagging(x) = arg maxk∈Y
∑B
b=1 1{f̂b(x) = k}
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Insights

• Trees generated in bagging are identically distributed (not independent!)

• Bias of bagged tress is the same as the individual tree

• Pro: Reduce the variance, so good for high-variance, low-bias procedures,
like trees.

• Heuristics: Suppose we have B identically distributed random variables
with variance σ2 and positive pairwise correlation ρ, then their average
has variance of

ρσ2 + 1− ρ

B
σ2

• Increasing B does not reduce the first term
— Random Forest!
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Random forests

• Key idea: use random dropout to decorrelate bootstrapped trees
• When growing a tree on a bootstrapped sample, before each split of the

node, select m≪ d variables at random as candidates to split
• Typical values for m is

√
d.

• Majority vote: f̂RF(x) = arg maxk∈Y
∑B
b=1 1{f̃b(x) = k}

Classification: Part 2 3-10



How to remove bias: Boosting

• Setup: X = Rd, Y = {±1}
• Weak classifier: error rate only slightly better than random guess
• Key idea: sequentially apply weak classification algorithm to repeatedly

modified versions of the data to produce a sequence of weak classifiers
◦ assign unequal weights to training data points

— possible for trees
◦ sequentially find a committee of weak classifiers {f̂m}Mm=1
◦ produce the final prediction through a weighted majority vote

f̂(x) := sign(
M∑
m=1

αmf̂m(x))
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AdaBoost

Initialization: set the weights wi = 1/n for 1 ≤ i ≤ n.
For m = 1, . . . , M :

• Fit a weak classifier f̂m(x) using training data with weights ω1, . . . , ωn

• Compute the weighted misclassification error:

err(m) =
∑n
i=1 wi 1{Yi ̸= f̂m(Xi)}∑n

i=1 wi
.

• Compute:

αm = log
(1− err(m)

err(m)

)
.

• Update the weights by:

wi ← wi · exp
(
αm · 1{Yi ̸= f̂m(Xi)}

)
, i = 1, 2, . . . , n.

Output: f̂(x) = sign
(∑M

m=1 αmf̂m(x)
)
.
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AdaBoost: insights

Key idea: in the weight update step

wi ← wi · exp
(
αm · 1{Yi ̸= f̂m(Xi)}

)
, i = 1, 2, . . . , n.

• For incorrectly classified data points, their weights get inflated by eαm

• Note that αm > 0 should always hold

• This re-weighting encourages the next classifier to focus more on the
misclassified data points
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Discussion: three main approaches to classification



Three main approaches

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

minimizes the Bayes risk R(f) = P(f(X) ̸= Y )

• Plug-in approach

• Regression

• Empirical risk minimization

• Other approaches: SVM, tree-based methods...
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Three main approaches

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

minimizes the Bayes risk R(f) = P(f(X) ̸= Y )

• Plug-in approach: model data distribution ρ, then estimate densities

P(Y = y | X = x) = P(X = x | Y = y)P(Y = y)∑
y′∈Y P(X = x | Y = y′)P(Y = y′)
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Three main approaches

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

minimizes the Bayes risk R(f) = P(f(X) ̸= Y )

• Plug-in approach: model data distribution ρ, then estimate densities

P(Y = y | X = x) = P̂(X = x | Y = y) P̂(Y = y)∑
y′∈Y P̂(X = x | Y = y′) P̂(Y = y′)

Example: LDA, QDA, Kernel density classifier

• Regression

• Empirical risk minimization

• Other approaches: SVM, tree-based methods...
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Three main approaches

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

minimizes the Bayes risk R(f) = P(f(X) ̸= Y )
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Three main approaches

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

minimizes the Bayes risk R(f) = P(f(X) ̸= Y )

• Plug-in approach

• Regression: modeling and estimating each

rk(x) := P(Y = k | X = x) for k = 1, . . . , K

Example: logistic regression

• Empirical risk minimization

• Other approaches: SVM, tree-based methods...
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Three main approaches

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

minimizes the Bayes risk R(f) = P(f(X) ̸= Y )

• Plug-in approach

• Regression

• Empirical risk minimization: choose a set of classifiers F and find f̂ ∈ F
that minimizes the “empirical risk”:

Rn(f) := 1
n

n∑
i=1

1{f(Xi) ̸= Yi}

Intuition: when n is large, Rn(f) ≈ R(f) by LLN

• Other approaches: SVM, tree-based methods...
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ERM: advantages

f̂n = arg min
f∈F

1
n

n∑
i=1

1{f(Xi) ̸= Yi} =: Rn(f)

• a straightforward method based on simple heuristics
— robustness!

• can be easily generalized to other loss ℓ(·, ·) by considering

Rn(f) := 1
n

n∑
i=1

ℓ(f(Xi), Yi)

if the ultimate goal is to minimize Rℓ(f) = E[ℓ(f(X), Y )]. For example,
in binary classification (i.e., Y = {0, 1})
◦ Hinge loss ℓ(f(x), y) = max{0, 1− yf(x)}
◦ Logistic loss ℓ(f(x), y) = log(1 + exp(−yf(x)))

— Logistic regression can also be viewed as ERM!
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ERM: disadvantages

f̂n = arg min
f∈F

1
n

n∑
i=1

1{f(Xi) ̸= Yi} =: Rn(f)

• Not easy to compute (due to nonsmoothness of the indicator function)

• Solution: in binary classification (i.e., Y = {0, 1}), consider using hinge
loss or logistic loss ℓ(·)

Rn(f) := 1
n

n∑
i=1

ℓ(f(Xi), Yi)

and relax f : Rd → R, and finally output sign(2(f(x)− 1))

• Here we will only focus on the standard ERM
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ERM: error decomposition

f̂n = arg min
f∈F

1
n

n∑
i=1

1{f(Xi) ̸= Yi} =: Rn(f)

• We want to control the excess risk

R(f̂n)−R(f⋆) = R(f̂n)−min
f∈F

R(f)︸ ︷︷ ︸
≥0, statistical error

+ min
f∈F

R(f)−R(f⋆)︸ ︷︷ ︸
≥0, approximation error

• approximation error: becomes smaller when choosing larger F
— becomes 0 when f⋆ ∈ F

• statistical error: becomes smaller when n becomes larger, and when
choosing smaller F (why?)

• trade-off between fit and complexity

• In this course, we will focus on understanding statistical error with a given
F that includes f⋆ (so that approximation error = 0)
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Excess risk via uniform deviations

f̂n = arg min
f∈F

1
n

n∑
i=1

1{f(Xi) ̸= Yi} =: Rn(f)

Theorem 3.1
The excess risk is upper bounded by

R(f̂n)−R(f⋆) ≤ 2 sup
f∈F
|Rn(f)−R(f)|

Implications:

• For a given f , we know that Rn(f)→ R(f) at a rate O(1/
√

n) by CLT
√

n
(
Rn(f)−R(f)

) d→ N (0, var(1{f(X) ̸= Y }))

• But what about the uniform convergence of supf∈F |Rn(f)−R(f)|?
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Concentration inequalities and uniform convergence



Why concentration inequalities?

Consider i.i.d. variables X1, . . . , Xn with E[Xi] = µ and var(Xi) = σ2

• Central limit theorem (CLT):

√
n
( 1

n

n∑
i=1

Xi − µ
)

d→ N (0, σ2)

tells us that the sample average concentrates around µ, and the deviation
scales like σ/

√
n as n→∞

• But this does not say anything useful when n is finite

• We want some non-asymptotic statement like:

P
(∣∣∣ 1

n

n∑
i=1

Xi − µ
∣∣∣ ≥ ε(n, δ)

)
≤ δ

holds for any δ > 0, where ε(n, δ) > 0 is some quantity that depends on
the sample size n and the exceptional probability δ

Classification: Part 2 3-21



A simple case with i.i.d. Gaussian

Suppose that X1, . . . , Xn
i.i.d.∼ N (µ, σ2), then we have

1
n

n∑
i=1

Xi − µ ∼ N
(

0,
σ2

n

)
Theorem 3.2
For G ∼ N (0, 1) and any t > 0, we have(1

t
− 1

t3

) 1√
2π

e−t2/2 ≤ P(G ≥ t) ≤ 1
t

1√
2π

e−t2/2.

As a result,

P
(∣∣∣ 1

n

n∑
i=1

Xi − µ
∣∣∣ ≥ t

)
≤ 2σ√

nt

1√
2π

exp
(
− nt2

2σ2

)

Question: how can we extend these to more general distributions?
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From Gaussian to sub-Gaussian

• Question: can we generalize these results to other random variables?

• Idea: consider other random variables with similar tail probability

• From Theorem 3.2, we know that for G ∼ N (0, σ2),

P(|G| ≥ t) ≲ e−t2/σ2
for all t ≥ 0

• We may consider random variables satisfy this type of tail properties
— sub-Gaussian
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Sub-Gaussian properties

Let X be a random variable, then the following properties are equivalent:

1. The tails of X satisfy

P(|X| ≥ t) ≤ 2 exp
(
−t2/K2

1
)

for all t ≥ 0
2. The moments of X satisfy

∥X∥Lp := (E[|X|p])1/p ≤ K2
√

p for all p ≥ 1
3. The moment generating function (MGF) of X2 satisfies

E
[

exp(λ2X2)
]
≤ exp(K2

3 λ2) for all λ such that |λ| ≤ 1/K3

4. The MGF of X2 is bounded at some point, namely

E
[

exp
(
X2/K2

4
) ]
≤ 2.

5. If EX = 0, then the MGF of X satisfies

E
[

exp(λX)
]
≤ exp(K2

5 λ2) for all λ ∈ R.

where K1, . . . , K5 > 0 may differ by at most a multiplicative constant factor
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Sub-Gaussian distributions: definition

• If X satisfies one of properties 1-4, it is a sub-Gaussian random variable.

• The sub-Gaussian norm of X, denoted ∥X∥ψ2 , is defined to be the
smallest K4 in property 4. In other words, we define

∥X∥ψ2 = inf
{

t > 0 : E exp
(
X2/t2) ≤ 2

}
.

— can also be defined using K1, K2 or K3

• Properties: there exists some absolute constants c, C > 0 such that
◦ P (|X| ≥ t) ≤ 2 exp

(
− ct2/∥X∥2

ψ2

)
◦ ∥X∥Lp ≤ C∥X∥ψ2

√
p

◦ E exp
(
X2/∥X∥2

ψ2

)
≤ 2

◦ if E[X] = 0, then E exp(λX) ≤ exp(Cλ2∥X∥2
ψ2

)
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Sub-Gaussian distributions: examples

• Gaussian: if X ∼ N (0, σ2), then X is sub-Gaussian with

∥X∥ψ2 ≤ Cσ

for some universal constant C = 2
√

2/3.

• Bounded: any bounded random variable X is sub-Gaussian with

∥X∥ψ2 ≤ C∥X∥∞

for some universal constant C = 1/
√

log 2.

Sub-Gaussian norm can be viewed as a characterization of “magnitude” for
light tail distributions.
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Centering and independent sums

Theorem 3.3

• If X is sub-Gaussian, then X − E[X] is sub-Gaussian with

∥X − E[X]∥ψ2 ≤ C∥X∥ψ2

where C is an absolute constant.

• Let X1, . . . , XN be independent, mean zero, sub-Gaussian random
variables. Then the sum SN =

∑N
i=1 Xi is also sub-Gaussian, and its

sub-Gaussian norm satisfies

∥SN∥2
ψ2
≤ C

N∑
i=1
∥Xi∥2

ψ2
,

where C is an absolute constant.

Analog:
• If X1, . . . , Xn are i.i.d. N (0, σ2), then SN ∼ N (0, Nσ2)
• If X1, . . . , Xn are independent with ∥Xi∥ψ2 ≤ σ, then ∥SN∥ψ2 ≲

√
Nσ
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Hoeffding’s inequality

Theorem 3.4 (Hoeffding’s Inequality)
Let X1, . . . , XN be independent, mean-zero, sub-Gaussian random variables.
Then, for any t ≥ 0, we have:

P

(∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2∑N

i=1 ∥Xi∥2
ψ2

)
,

where c is an absolute constant.
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Implications

• General Hoeffding: under the setup of Theorem 3.4, consider any vector
a = (a1, . . . , an) ∈ Rn, we have

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2

K2∥a∥2
2

)
,

where K := max ∥Xi∥ψ2 .

• Example: suppose that Xi ∼ Bernoulli(pi) for 1 ≤ i ≤ n, then

P

(∣∣∣∣∣
N∑
i=1

(Xi − pi)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−ct2

N

)
,

A sharper result for binomial concentration: Chernoff’s inequality (HW)
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Back to ERM: finite F

f̂n = arg min
f∈F

1
n

n∑
i=1

1{f(Xi) ̸= Yi} =: Rn(f)

Theorem 3.5
Suppose that F is a finite set. Then with probability exceeding 1− δ, the
excess risk of ERM is upper bounded by

R(f̂n)−R(f⋆) ≤ C

√
log(|F|/δ)

n
.

for some universal constant C > 0.

• Key proof idea: union bound argument
• What if F is not finite (e.g., the set of linear classifiers)?

— use VC dimension!

• But before going into that, let’s first warm up with something simpler
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ℓ2 norm of a sub-Gaussian random vector

• Consider a random vector x = (X1, . . . , Xd), where X1, . . . , Xd are
independent random variables with E[Xi] = 0 and ∥Xi∥ψ2 ≤ σ

• Can we establish a non-asymptotic upper bound for ∥x∥2?

• Solution 1: entrywise concentration and union bound

P
(
∥x∥2 ≤ Cσ

√
d log(d/δ)

)
≥ 1− δ

for some universal constant C > 0

• Solution 2: uniform concentration using

∥x∥2 = sup
a∈Sd−1

a⊤x

where Sd−1 := {x ∈ Rd : ∥x∥2 = 1} is the unit sphere in Rd

— could this provide a better concentration bound?

Classification: Part 2 3-31



ℓ2 norm of a sub-Gaussian random vector

• Consider a random vector x = (X1, . . . , Xd), where X1, . . . , Xd are
independent random variables with E[Xi] = 0 and ∥Xi∥ψ2 ≤ σ
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ℓ2 norm of a sub-Gaussian random vector

• Consider a random vector x = (X1, . . . , Xd), where X1, . . . , Xd are
independent random variables with E[Xi] = 0 and ∥Xi∥ψ2 ≤ σ
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Operator norm of sub-Gaussian matrix

• Consider a random matrix X = (Xi,j)1≤i,j≤d with independent entries
that satisfies E[Xi,j ] = 0 and ∥Xi,j∥ψ2 ≤ σ

• Can we establish a non-asymptotic upper bound for ∥X∥?

• Operator norm:

∥X∥ = sup
a∈Sd−1

∥Xa∥2 = sup
a,b∈Sd−1

a⊤Xb

where Sd−1 := {x ∈ Rd : ∥x∥2 = 1} is the unit sphere in Rd
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A framework for uniform concentration

• Goal: upper bounding supa∈Sd−1 a⊤x

• Step 1: pointwise concentration. For any fixed a ∈ Sd−1, we can use
Hoeffding’s inequality to get

P
(
|a⊤x| ≤ Cσ

√
log(1/δ)

)
≥ 1− δ

for some universal constant C > 0

• Difficulty: the unit sphere Sd−1 is not a finite set, union bound argument
does not work

• Idea: find a finite subset N of Sd−1 that is fine enough, such that

sup
a∈Sd−1

a⊤x
?
≲ sup

a∈N
a⊤x ≤ Cσ

√
log(|N |/δ)

with probability at least 1− δ
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Epsilon net

• Let (T, d) be a metric space. Consider a subset K ⊂ T and let ε > 0.
— e.g., consider T = Rd, d(·, ·) is Euclidean distance, K = Sd−1

• A subset N ⊆ K is called an ε-net of K if every point in K is within
distance ε of some point of N , i.e.,

∀x ∈ K, ∃x0 ∈ N s.t. d(x, x0) ≤ ε.

Theorem 3.6
Let Nε be an ε-net of Sd−1. If ε < 1, then for any x ∈ Rd,

sup
a∈Nε

a⊤x ≤ sup
a∈Sd−1

a⊤x ≤ 1
1− ε

sup
a∈Nε

a⊤x,

and if ε < 1/2, then for any X ∈ Rd×d,

sup
a,b∈Nε

a⊤Xb ≤ sup
a,b∈Sd−1

a⊤Xb ≤ 1
1− 2ε

sup
a,b∈Nε

a⊤Xb.
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The covering number

Covering number: the smallest possible cardinality of an ε-net of K,
denoted by N (K, ε)

Theorem 3.7
The covering number of Sd−1 is upper bounded by

N (Sd−1, ε) ≤
(

2
ε

+ 1
)d
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ℓ2 norm of sub-Gaussian random vector

• Goal: upper bounding supa∈Sd−1 a⊤x

• Step 1: pointwise concentration. For any fixed a ∈ Sd−1, we can use
Hoeffding’s inequality to get

P
(
|a⊤x| ≤ C1σ

√
log(1/δ)

)
≥ 1− δ

for some universal constant C1 > 0

• Step 2: uniform concentration over an 1/2-net. Let N1/2 be the
smallest 1/2-net of Sd−1. By union bound argument and Theorem 3.7,

P
(

sup
a∈N1/2

|a⊤x| ≤ C2σ
√

d log(1/δ)
)
≥ 1− δ

for some universal constant C2 > 0

• Step 3: approximation. By Theorem 3.6,

P
(
∥x∥2 ≤ C3σ

√
d log(1/δ)

)
≥ 1− δ

for some universal constant C3 > 0
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ℓ2 norm of sub-Gaussian random vector

• Goal: upper bounding supa∈Sd−1 a⊤x
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ℓ2 norm of sub-Gaussian random vector

• Goal: upper bounding supa∈Sd−1 a⊤x
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Operator norm of sub-Gaussian random matrix

• Goal: upper bounding supa,b∈Sd−1 a⊤Xb

• Step 1: pointwise concentration. For any fixed a, b ∈ Sd−1, we can
use Hoeffding’s inequality to get

P
(
|a⊤Xb| ≤ C1σ

√
log(1/δ)

)
≥ 1− δ

for some universal constant C1 > 0

• Step 2: uniform concentration over an 1/4-net. Let N1/4 be the
smallest 1/4-net of Sd−1. By union bound argument and Theorem 3.7,

P
(

sup
a,b∈N1/4

|a⊤Xb| ≤ C2σ
√

d log(1/δ)
)
≥ 1− δ

for some universal constant C2 > 0

• Step 3: approximation. By Theorem 3.6,

P
(
∥X∥2 ≤ 2C2σ

√
d log(1/δ)

)
≥ 1− δ

for some universal constant C3 > 0
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Operator norm of sub-Gaussian random matrix

• Goal: upper bounding supa,b∈Sd−1 a⊤Xb
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Operator norm of sub-Gaussian random matrix

• Goal: upper bounding supa,b∈Sd−1 a⊤Xb
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VC dimension

• Let F be a class of binary functions on the domain X .

• Shattering: a set of points {x1, . . . , xk} ⊆ X is shattered by F if for
every possible labeling {0, 1}k, there exists a function f ∈ F that realizes
the labeling.

• The VC dimension of F , denoted VC(F), is the largest integer k such
that there exists a set of k points in X that can be shattered by F .

• Examples:
◦ When X = R2, F = linear classifiers, we have vc(F) = 3
◦ In general, when X = Rd, F = linear classifiers, then vc(F) = d + 1
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Bounding excess risk via VC dimension

f̂n = arg min
f∈F

1
n

n∑
i=1

1{f(Xi) ̸= Yi} =: Rn(f)

Theorem 3.8
Suppose that F is a class of Boolean function with vc(F) <∞. Then with
probability exceeding 1− δ,

R(f̂n)−R(f⋆) ≤ C

√
vc(F) log(1/δ)

n

for some universal constant C > 0.

Implications:
• For F = linear classifiers in Rd, the excess risk is O(

√
d/n).
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