STAT 615: Statistical Learning

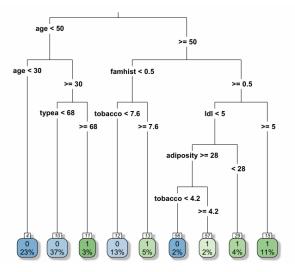
Classification: Part 2

Yuling Yan

University of Wisconsin-Madison, Fall 2024

Tree-based methods

South African heart disease data: "0"="Yes, Disease", "1"="No"



Setup: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{1, \dots, K\}$, training data $(X_1, Y_1), \dots, (X_n, Y_n)$ Idea: grow a tree to recursively partition the feature space into a set of rectangles, and do a simple majority vote in each rectangle

- Each node represents a rectangle in the feature space. The root node is the feature space $\mathcal{X}=\mathbb{R}^d$
- Each node is either a leaf (no children) or a parent (has two children)
- The left and right children comes from a partition of their parent node
- Suppose we have a collection of final partitioned regions associated with the leaves at the bottom of the tree, denoted by R_1, \ldots, R_M
- For any input x, suppose that $x \in R_j$, then this classification tree returns

$$\widehat{f}(x) = \arg \max_{k \in \mathcal{Y}} \sum_{X_i \in R_j} \mathbb{1}\{Y_i = k\}$$

i.e., the predicted label is the majority in the region R_j

In order to grow a classification tree, we need to ask:

- 1. How to split each parent node?
- 2. How large should we grow the tree?

For the first question: minimizing impurity

- Suppose that the parent node is associated with a rectangle ${\boldsymbol R}$
- Choose a covariate X_j and a split point t that minimizes the impurity
- Let the rectangles associated with its left and right children be

 $R_1(j,t) = \{ X \in R : X_j \le t \} \text{ and } R_2(j,t) = \{ X \in R : X_j > t \},\$

For the second question: set some stopping criteria.

• For example, we may fix some number n_0 , and we might stop partition a node when its associated rectangle has fewer than n_0 training data points.

Impurity function

Let ${\boldsymbol R}$ be the node to be split into two regions. We choose

$$\underset{j,t}{\operatorname{arg\,min}} \underbrace{\frac{|R_1(j,t)|}{|R|}\gamma(R_1(j,t)) + \frac{|R_2(j,t)|}{|R|}\gamma(R_2(j,t)),}_{\text{impurity function}}$$

- Here $\gamma(R)$ measures the "variance" of the labels of data in R: we want $\{Y_i:X_i\in R\}\quad \text{to have low variability}$
- For any given rectangle R, let

$$p_k = \frac{1}{|R|} \sum_{X_i \in R} \mathbb{1}\{Y_i = k\}, \quad 1 \le k \le K.$$

Two common choice of the function $\gamma(\cdot)$:

- Gini index: $\gamma(R) = \sum_{k} p_k (1 p_k)$
- Cross entropy: $\gamma(R) = -\sum_k p_k \log p_k$

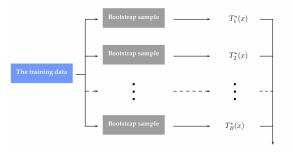
- advantage: the tree structure provides great interpretability
 - $\circ~$ for example, it allows reasoning about the cause of diseases
- **disadvantage:** instability due to the use of *greedy* search:
 - splitting process is greedy
 - small changes in the training data can lead to significantly different tree structures

• Solutions:

- $\circ~$ Regularization: controlling tree growth parameters
- Pruning: removing branches that do not provide significant predictive power
- Ensemble Methods: use bagging to create a random forest

Bootstrap aggregating (Bagging)

- Training data $Z_n = \{(X_i, Y_i), 1 \le i \le n\}$
- Bootstrap sample $Z^{(*b)} = \{(X_i^{(*b)}, Y_i^{(*b)}), 1 \le i \le n\}$: sample n data points randomly from Z_n with replacement
- Apply the learning algorithm to the bootstrap sample for B times, and produce outcomes \widehat{f}_b
- Majority vote: $\hat{f}^{\mathsf{bagging}}(x) = \arg \max_{k \in \mathcal{Y}} \sum_{b=1}^{B} \mathbb{1}\{\hat{f}_b(x) = k\}$



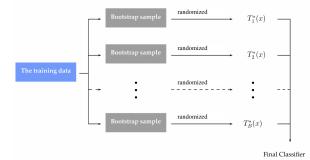
- Trees generated in bagging are identically distributed (not independent!)
- Bias of bagged tress is the same as the individual tree
- **Pro**: Reduce the variance, so good for high-variance, low-bias procedures, like trees.
- Heuristics: Suppose we have B identically distributed random variables with variance σ^2 and positive pairwise correlation ρ , then their average has variance of

$$\rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$$

• Increasing ${\cal B}$ does not reduce the first term

- Random Forest!

- Key idea: use random dropout to decorrelate bootstrapped trees
- When growing a tree on a bootstrapped sample, before each split of the node, select $m \ll d$ variables at random as candidates to split
- Typical values for m is \sqrt{d} .
- Majority vote: $\widehat{f}^{\mathsf{RF}}(x) = \arg \max_{k \in \mathcal{Y}} \sum_{b=1}^{B} \mathbb{1}\{\widetilde{f}_b(x) = k\}$



- Setup: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{\pm 1\}$
- Weak classifier: error rate only slightly better than random guess
- Key idea: sequentially apply weak classification algorithm to repeatedly modified versions of the data to produce a sequence of weak classifiers
 - $\circ~$ assign unequal weights to training data points

- possible for trees

- $\circ\,$ sequentially find a committee of weak classifiers $\{\widehat{f}_m\}_{m=1}^M$
- $\circ\;$ produce the final prediction through a weighted majority vote

$$\widehat{f}(x) \coloneqq \operatorname{sign}(\sum_{m=1}^{M} \alpha_m \widehat{f}_m(x))$$

Initialization: set the weights $w_i = 1/n$ for $1 \le i \le n$. For m = 1, ..., M:

- Fit a weak classifier $\widehat{f}_m(x)$ using training data with weights ω_1,\ldots,ω_n
- Compute the weighted misclassification error:

$$\operatorname{err}^{(m)} = \frac{\sum_{i=1}^{n} w_i \mathbb{1}\{Y_i \neq \widehat{f}_m(X_i)\}}{\sum_{i=1}^{n} w_i}.$$

Compute:

$$\alpha_m = \log\Big(\frac{1 - \operatorname{err}^{(m)}}{\operatorname{err}^{(m)}}\Big).$$

• Update the weights by:

$$w_i \leftarrow w_i \cdot \exp\left(\alpha_m \cdot \mathbb{1}\left\{Y_i \neq \widehat{f}_m(X_i)\right\}\right), \quad i = 1, 2, \dots, n.$$

Output: $\widehat{f}(x) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m \widehat{f}_m(x)\right).$

Classification: Part 2

Key idea: in the weight update step

$$w_i \leftarrow w_i \cdot \exp\left(\alpha_m \cdot \mathbb{1}\left\{Y_i \neq \widehat{f}_m(X_i)\right\}\right), \quad i = 1, 2, \dots, n.$$

• For incorrectly classified data points, their weights get inflated by e^{α_m}

• Note that
$$\alpha_m > 0$$
 should always hold

• This re-weighting encourages the next classifier to focus more on the misclassified data points

Discussion: three main approaches to classification

$$f^\star(x)\coloneqq \argmax_{y\in\mathcal{Y}} \mathbb{P}(Y=y\mid X=x)$$
 minimizes the Bayes risk $R(f)=\mathbb{P}(f(X)\neq Y)$

$$f^{\star}(x) \coloneqq \underset{y \in \mathcal{Y}}{\arg \max} \ \mathbb{P}(Y = y \mid X = x)$$

minimizes the Bayes risk $R(f) = \mathbb{P}(f(X) \neq Y)$

• Plug-in approach: model data distribution ρ , then estimate densities

$$\mathbb{P}(Y = y \mid X = x) = \frac{\mathbb{P}(X = x \mid Y = y) \mathbb{P}(Y = y)}{\sum_{y' \in \mathcal{Y}} \mathbb{P}(X = x \mid Y = y') \mathbb{P}(Y = y')}$$

$$f^{\star}(x) \coloneqq \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \ \mathbb{P}(Y = y \mid X = x)$$

minimizes the Bayes risk $R(f) = \mathbb{P}(f(X) \neq Y)$

• Plug-in approach: model data distribution ρ , then estimate densities

$$\mathbb{P}(Y = y \mid X = x) = \frac{\widehat{\mathbb{P}}(X = x \mid Y = y) \,\widehat{\mathbb{P}}(Y = y)}{\sum_{y' \in \mathcal{Y}} \widehat{\mathbb{P}}(X = x \mid Y = y') \,\widehat{\mathbb{P}}(Y = y')}$$

Example: LDA, QDA, Kernel density classifier

$$f^{\star}(x) \coloneqq \underset{y \in \mathcal{Y}}{\arg \max} \ \mathbb{P}(Y = y \mid X = x)$$

minimizes the Bayes risk $R(f) = \mathbb{P}(f(X) \neq Y)$

- Plug-in approach
- Regression: modeling and estimating each

$$r_k(x) \coloneqq \mathbb{P}(Y = k \mid X = x) \quad \text{for} \quad k = 1, \dots, K$$

$$f^{\star}(x) \coloneqq \underset{y \in \mathcal{Y}}{\arg \max} \ \mathbb{P}(Y = y \mid X = x)$$

minimizes the Bayes risk $R(f) = \mathbb{P}(f(X) \neq Y)$

- Plug-in approach
- Regression: modeling and estimating each

$$r_k(x) \coloneqq \mathbb{P}(Y = k \mid X = x) \quad \text{for} \quad k = 1, \dots, K$$

Example: logistic regression

$$f^{\star}(x) \coloneqq \underset{y \in \mathcal{Y}}{\arg \max} \ \mathbb{P}(Y = y \mid X = x)$$

minimizes the Bayes risk $R(f) = \mathbb{P}(f(X) \neq Y)$

- Plug-in approach
- Regression
- Empirical risk minimization: choose a set of classifiers \mathcal{F} and find $\widehat{f} \in \mathcal{F}$ that minimizes the "empirical risk":

$$R_n(f) \coloneqq \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{f(X_i) \neq Y_i\}$$

Intuition: when n is large, $R_n(f)\approx R(f)$ by LLN

$$f^{\star}(x) \coloneqq \operatorname*{arg\,max}_{y \in \mathcal{Y}} \mathbb{P}(Y = y \mid X = x)$$

minimizes the Bayes risk $R(f) = \mathbb{P}(f(X) \neq Y)$

- Plug-in approach
- Regression
- Empirical risk minimization
- Other approaches: SVM, tree-based methods...

ERM: advantages

$$\widehat{f}_n = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{f(X_i) \neq Y_i\} \eqqcolon R_n(f)$$

• a straightforward method based on simple heuristics

- robustness!

- can be easily generalized to other loss $\ell(\cdot, \cdot)$ by considering

$$R_n(f) \coloneqq \frac{1}{n} \sum_{i=1}^n \ell(f(X_i), Y_i)$$

if the ultimate goal is to minimize $R_{\ell}(f) = \mathbb{E}[\ell(f(X), Y)]$. For example, in binary classification (i.e., $\mathcal{Y} = \{0, 1\}$)

- Logistic regression can also be viewed as ERM!

$$\widehat{f}_n = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{f(X_i) \neq Y_i\} \eqqcolon R_n(f)$$

- Not easy to compute (due to nonsmoothness of the indicator function)
- Solution: in binary classification (i.e., $\mathcal{Y} = \{0, 1\}$), consider using hinge loss or logistic loss $\ell(\cdot)$

$$R_n(f) \coloneqq \frac{1}{n} \sum_{i=1}^n \ell(f(X_i), Y_i)$$

and relax $f:\mathbb{R}^d\to\mathbb{R},$ and finally output $\mathrm{sign}(2(f(x)-1))$

• Here we will only focus on the standard ERM

ERM: error decomposition

$$\widehat{f}_n = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{f(X_i) \neq Y_i\} \eqqcolon R_n(f)$$

• We want to control the excess risk

$$R(\widehat{f}_n) - R(f^{\star}) = \underbrace{R(\widehat{f}_n) - \min_{f \in \mathcal{F}} R(f)}_{\geq 0, \text{ statistical error}} + \underbrace{\min_{f \in \mathcal{F}} R(f) - R(f^{\star})}_{\geq 0, \text{ approximation error}}$$

• approximation error: becomes smaller when choosing larger ${\cal F}$

— becomes 0 when $f^* \in \mathcal{F}$

- statistical error: becomes smaller when n becomes larger, and when choosing smaller $\mathcal F$ (why?)
- trade-off between fit and complexity
- In this course, we will focus on understanding statistical error with a given \mathcal{F} that includes f^* (so that approximation error = 0)

Excess risk via uniform deviations

$$\widehat{f}_n = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{f(X_i) \neq Y_i\} \eqqcolon R_n(f)$$

Theorem 3.1

The excess risk is upper bounded by

$$R(\widehat{f}_n) - R(f^*) \le 2 \sup_{f \in \mathcal{F}} |R_n(f) - R(f)|$$

Implications:

- For a given f, we know that $R_n(f) \to R(f)$ at a rate $O(1/\sqrt{n})$ by CLT $\sqrt{n}(R_n(f) - R(f)) \xrightarrow{d} \mathcal{N}(0, \operatorname{var}(\mathbb{1}\{f(X) \neq Y\}))$
- But what about the uniform convergence of $\sup_{f \in \mathcal{F}} |R_n(f) R(f)|$?

Concentration inequalities and uniform convergence

Why concentration inequalities?

Consider i.i.d. variables X_1, \ldots, X_n with $\mathbb{E}[X_i] = \mu$ and $var(X_i) = \sigma^2$

• Central limit theorem (CLT):

$$\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right) \xrightarrow{\mathsf{d}} \mathcal{N}(0, \sigma^2)$$

tells us that the sample average concentrates around $\mu,$ and the deviation scales like σ/\sqrt{n} as $n\to\infty$

- But this does not say anything useful when n is finite
- We want some non-asymptotic statement like:

$$\mathbb{P}\Big(\Big|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\Big|\geq\varepsilon(n,\delta)\Big)\leq\delta$$

holds for any $\delta > 0$, where $\varepsilon(n, \delta) > 0$ is some quantity that depends on the sample size n and the exceptional probability δ

A simple case with i.i.d. Gaussian

Suppose that $X_1,\ldots,X_n \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(\mu,\sigma^2)$, then we have

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\sim\mathcal{N}\left(0,\frac{\sigma^{2}}{n}\right)$$

Theorem 3.2

For $G \sim \mathcal{N}(0, 1)$ and any t > 0, we have

$$\left(\frac{1}{t} - \frac{1}{t^3}\right) \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \le \mathbb{P}(G \ge t) \le \frac{1}{t} \frac{1}{\sqrt{2\pi}} e^{-t^2/2}.$$

As a result,

$$\mathbb{P}\Big(\Big|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\Big| \ge t\Big) \le \frac{2\sigma}{\sqrt{n}t}\frac{1}{\sqrt{2\pi}}\exp\Big(-\frac{nt^{2}}{2\sigma^{2}}\Big)$$

A simple case with i.i.d. Gaussian

Suppose that $X_1,\ldots,X_n \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(\mu,\sigma^2)$, then we have

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\sim\mathcal{N}\left(0,\frac{\sigma^{2}}{n}\right)$$

Theorem 3.2

For $G \sim \mathcal{N}(0,1)$ and any t > 0, we have

$$\left(\frac{1}{t} - \frac{1}{t^3}\right) \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \le \mathbb{P}(G \ge t) \le \frac{1}{t} \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$$

As a result,

$$\mathbb{P}\Big(\Big|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\Big| \ge t\Big) \le \frac{2\sigma}{\sqrt{nt}}\frac{1}{\sqrt{2\pi}}\exp\Big(-\frac{nt^{2}}{2\sigma^{2}}\Big)$$

Question: how can we extend these to more general distributions?

Classification: Part 2

- Question: can we generalize these results to other random variables?
- Idea: consider other random variables with similar tail probability
- From Theorem 3.2, we know that for $G \sim \mathcal{N}(0, \sigma^2)$,

$$\mathbb{P}(|G| \geq t) \lesssim e^{-t^2/\sigma^2} \quad \text{for all } t \geq 0$$

• We may consider random variables satisfy this type of tail properties — *sub-Gaussian*

Sub-Gaussian properties

Let X be a random variable, then the following properties are equivalent:

1. The tails of X satisfy

$$\mathbb{P}(|X| \ge t) \le 2\exp\left(-t^2/K_1^2\right) \quad \text{for all } t \ge 0$$

2. The moments of X satisfy

$$\|X\|_{L^p} \coloneqq (\mathbb{E}[|X|^p])^{1/p} \le K_2 \sqrt{p} \quad \text{for all } p \ge 1$$

3. The moment generating function (MGF) of X^2 satisfies

 $\mathbb{E}\big[\exp(\lambda^2 X^2)\big] \le \exp(K_3^2 \lambda^2) \quad \text{for all } \lambda \text{ such that } |\lambda| \le 1/K_3$

4. The MGF of X^2 is bounded at some point, namely

$$\mathbb{E}\left[\exp\left(X^2/K_4^2\right)\right] \le 2.$$

5. If $\mathbb{E}X = 0$, then the MGF of X satisfies

$$\mathbb{E}\big[\exp(\lambda X)\big] \leq \exp(K_5^2\lambda^2) \quad \text{for all } \lambda \in \mathbb{R}.$$

where $K_1, \ldots, K_5 > 0$ may differ by at most a multiplicative constant factor

Classification: Part 2

Sub-Gaussian distributions: definition

- If X satisfies one of properties 1-4, it is a *sub-Gaussian random variable*.
- The sub-Gaussian norm of X, denoted $||X||_{\psi_2}$, is defined to be the smallest K_4 in property 4. In other words, we define

$$||X||_{\psi_2} = \inf \{t > 0 : \mathbb{E} \exp (X^2/t^2) \le 2\}.$$

— can also be defined using K_1 , K_2 or K_3

• Properties: there exists some absolute constants c, C > 0 such that

$$\begin{array}{l} \circ \ \ P(|X| \geq t) \leq 2 \exp\left(-ct^2/\|X\|_{\psi_2}^2\right) \\ \circ \ \ \|X\|_{L^p} \leq C\|X\|_{\psi_2}\sqrt{p} \\ \circ \ \ \mathbb{E} \exp\left(X^2/\|X\|_{\psi_2}^2\right) \leq 2 \\ \circ \ \ \text{if } \mathbb{E}[X] = 0, \ \text{then } \mathbb{E} \exp(\lambda X) \leq \exp(C\lambda^2\|X\|_{\psi_2}^2) \end{array}$$

Sub-Gaussian distributions: examples

• Gaussian: if $X \sim \mathcal{N}(0, \sigma^2)$, then X is sub-Gaussian with

$$\|X\|_{\psi_2} \le C\sigma$$

for some universal constant $C = 2\sqrt{2/3}$.

• Bounded: any bounded random variable X is sub-Gaussian with

$$\|X\|_{\psi_2} \le C \|X\|_{\infty}$$

for some universal constant $C = 1/\sqrt{\log 2}$.

Sub-Gaussian norm can be viewed as a characterization of "magnitude" for light tail distributions.

Centering and independent sums

Theorem 3.3

• If X is sub-Gaussian, then $X - \mathbb{E}[X]$ is sub-Gaussian with

$$|X - \mathbb{E}[X]||_{\psi_2} \le C ||X||_{\psi_2}$$

where C is an absolute constant.

• Let X_1, \ldots, X_N be independent, mean zero, sub-Gaussian random variables. Then the sum $S_N = \sum_{i=1}^N X_i$ is also sub-Gaussian, and its sub-Gaussian norm satisfies

$$||S_N||_{\psi_2}^2 \le C \sum_{i=1}^N ||X_i||_{\psi_2}^2,$$

where C is an absolute constant.

Analog:

- If X_1, \ldots, X_n are i.i.d. $\mathcal{N}(0, \sigma^2)$, then $S_N \sim \mathcal{N}(0, N\sigma^2)$
- If X_1, \ldots, X_n are independent with $\|X_i\|_{\psi_2} \leq \sigma$, then $\|S_N\|_{\psi_2} \lesssim \sqrt{N}\sigma$

Classification: Part 2

Hoeffding's inequality

Theorem 3.4 (Hoeffding's Inequality)

Let X_1, \ldots, X_N be independent, mean-zero, sub-Gaussian random variables. Then, for any $t \ge 0$, we have:

$$\mathbb{P}\left(\left|\sum_{i=1}^{N} X_{i}\right| \geq t\right) \leq 2\exp\left(-\frac{ct^{2}}{\sum_{i=1}^{N} \|X_{i}\|_{\psi_{2}}^{2}}\right)$$

where c is an absolute constant.

,

• General Hoeffding: under the setup of Theorem 3.4, consider any vector $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$, we have

$$\mathbb{P}\left(\left|\sum_{i=1}^{N} a_i X_i\right| \ge t\right) \le 2 \exp\left(-\frac{ct^2}{K^2 \|\boldsymbol{a}\|_2^2}\right),$$

where $K \coloneqq \max \|X_i\|_{\psi_2}$.

• **Example:** suppose that $X_i \sim \text{Bernoulli}(p_i)$ for $1 \le i \le n$, then

$$\mathbb{P}\left(\left|\sum_{i=1}^{N} (X_i - p_i)\right| \ge t\right) \le 2\exp\left(-\frac{ct^2}{N}\right),$$

A sharper result for binomial concentration: Chernoff's inequality (HW)

Back to ERM: finite ${\cal F}$

$$\widehat{f}_n = \operatorname*{arg\,min}_{f \in \mathcal{F}} \ \frac{1}{n} \sum_{i=1}^n \mathbbm{1}\{f(X_i) \neq Y_i\} \eqqcolon R_n(f)$$

Theorem 3.5

Suppose that \mathcal{F} is a finite set. Then with probability exceeding $1 - \delta$, the excess risk of ERM is upper bounded by

$$R(\widehat{f}_n) - R(f^\star) \le C\sqrt{\frac{\log(|\mathcal{F}|/\delta)}{n}}$$

for some universal constant C > 0.

- Key proof idea: union bound argument
- What if \mathcal{F} is not finite (e.g., the set of linear classifiers)?

- use VC dimension!

Back to ERM: finite ${\cal F}$

$$\widehat{f}_n = \operatorname*{arg\,min}_{f \in \mathcal{F}} \ \frac{1}{n} \sum_{i=1}^n \mathbbm{1}\{f(X_i) \neq Y_i\} \eqqcolon R_n(f)$$

Theorem 3.5

Suppose that \mathcal{F} is a finite set. Then with probability exceeding $1 - \delta$, the excess risk of ERM is upper bounded by

$$R(\widehat{f}_n) - R(f^\star) \le C\sqrt{\frac{\log(|\mathcal{F}|/\delta)}{n}}$$

for some universal constant C > 0.

- Key proof idea: union bound argument
- What if \mathcal{F} is not finite (e.g., the set of linear classifiers)?

— use VC dimension!

• But before going into that, let's first warm up with something simpler

ℓ_2 norm of a sub-Gaussian random vector

- Consider a random vector $\boldsymbol{x} = (X_1, \dots, X_d)$, where X_1, \dots, X_d are independent random variables with $\mathbb{E}[X_i] = 0$ and $\|X_i\|_{\psi_2} \leq \sigma$
- Can we establish a non-asymptotic upper bound for $\|x\|_2$?

ℓ_2 norm of a sub-Gaussian random vector

- Consider a random vector $\boldsymbol{x} = (X_1, \dots, X_d)$, where X_1, \dots, X_d are independent random variables with $\mathbb{E}[X_i] = 0$ and $||X_i||_{\psi_2} \leq \sigma$
- Can we establish a non-asymptotic upper bound for $\| m{x} \|_2$?
- Solution 1: entrywise concentration and union bound

$$\mathbb{P}(\|m{x}\|_2 \le C\sigma\sqrt{d\log(d/\delta)}) \ge 1-\delta$$

for some universal constant ${\cal C}>0$

ℓ_2 norm of a sub-Gaussian random vector

- Consider a random vector $\boldsymbol{x} = (X_1, \ldots, X_d)$, where X_1, \ldots, X_d are independent random variables with $\mathbb{E}[X_i] = 0$ and $\|X_i\|_{\psi_2} \leq \sigma$
- Can we establish a non-asymptotic upper bound for $\| m{x} \|_2$?
- Solution 1: entrywise concentration and union bound

$$\mathbb{P}(\|m{x}\|_2 \le C\sigma\sqrt{d\log(d/\delta)}) \ge 1-\delta$$

for some universal constant C > 0

• Solution 2: uniform concentration using

$$\|oldsymbol{x}\|_2 = \sup_{oldsymbol{a}\in\mathcal{S}^{d-1}}oldsymbol{a}^{ op}oldsymbol{x}$$

where $S^{d-1} \coloneqq \{ x \in \mathbb{R}^d : \|x\|_2 = 1 \}$ is the unit sphere in \mathbb{R}^d — could this provide a better concentration bound?

Operator norm of sub-Gaussian matrix

- Consider a random matrix $X = (X_{i,j})_{1 \le i,j \le d}$ with independent entries that satisfies $\mathbb{E}[X_{i,j}] = 0$ and $||X_{i,j}||_{\psi_2} \le \sigma$
- Can we establish a non-asymptotic upper bound for $\|X\|$?
- Operator norm:

$$\|m{X}\| = \sup_{m{a}\in\mathcal{S}^{d-1}} \|m{X}m{a}\|_2 = \sup_{m{a},m{b}\in\mathcal{S}^{d-1}}m{a}^ opm{X}m{b}$$

ere $\mathcal{S}^{d-1}\coloneqq \{m{x}\in\mathbb{R}^d:\|m{x}\|_2=1\}$ is the unit sphere in \mathbb{R}^d

wh

A framework for uniform concentration

- Goal: upper bounding $\sup_{a \in S^{d-1}} a^{\top} x$
- Step 1: pointwise concentration. For any fixed $a \in S^{d-1}$, we can use Hoeffding's inequality to get

$$\mathbb{P}(|\boldsymbol{a}^{\top}\boldsymbol{x}| \leq C\sigma\sqrt{\log(1/\delta)}) \geq 1-\delta$$

for some universal constant ${\cal C}>0$

- Difficulty: the unit sphere \mathcal{S}^{d-1} is not a finite set, union bound argument does not work
- Idea: find a finite subset $\mathcal N$ of $\mathcal S^{d-1}$ that is *fine* enough, such that

$$\sup_{\boldsymbol{a}\in\mathcal{S}^{d-1}} \boldsymbol{a}^\top \boldsymbol{x} \stackrel{?}{\underset{\boldsymbol{a}\in\mathcal{N}}{\overset{}{\sim}}} \sup_{\boldsymbol{a}\in\mathcal{N}} \boldsymbol{a}^\top \boldsymbol{x} \leq C\sigma\sqrt{\log(|\mathcal{N}|/\delta)}$$

with probability at least $1-\delta$

Epsilon net

- Let (T, d) be a metric space. Consider a subset $K \subset T$ and let $\varepsilon > 0$. — e.g., consider $T = \mathbb{R}^d$, $d(\cdot, \cdot)$ is Euclidean distance, $K = S^{d-1}$
- A subset $N \subseteq K$ is called an ε -net of K if every point in K is within distance ε of some point of N, i.e.,

$$\forall x \in K, \quad \exists x_0 \in N \quad \text{s.t.} \quad d(x, x_0) \le \varepsilon.$$

Theorem 3.6

Let $\mathcal{N}_{\varepsilon}$ be an ε -net of \mathcal{S}^{d-1} . If $\varepsilon < 1$, then for any $x \in \mathbb{R}^d$,

$$\sup_{\boldsymbol{a}\in\mathcal{N}_{\varepsilon}}\boldsymbol{a}^{\top}\boldsymbol{x}\leq \sup_{\boldsymbol{a}\in\mathcal{S}^{d-1}}\boldsymbol{a}^{\top}\boldsymbol{x}\leq \frac{1}{1-\varepsilon}\sup_{\boldsymbol{a}\in\mathcal{N}_{\varepsilon}}\boldsymbol{a}^{\top}\boldsymbol{x},$$

and if $\varepsilon < 1/2$, then for any $\boldsymbol{X} \in \mathbb{R}^{d \times d}$,

$$\sup_{\boldsymbol{a},\boldsymbol{b}\in\mathcal{N}_{\varepsilon}}\boldsymbol{a}^{\top}\boldsymbol{X}\boldsymbol{b}\leq \sup_{\boldsymbol{a},\boldsymbol{b}\in\mathcal{S}^{d-1}}\boldsymbol{a}^{\top}\boldsymbol{X}\boldsymbol{b}\leq \frac{1}{1-2\varepsilon}\sup_{\boldsymbol{a},\boldsymbol{b}\in\mathcal{N}_{\varepsilon}}\boldsymbol{a}^{\top}\boldsymbol{X}\boldsymbol{b}.$$

Covering number: the smallest possible cardinality of an $\varepsilon\text{-net}$ of K, denoted by $\mathcal{N}(K,\varepsilon)$

Theorem 3.7

The covering number of \mathcal{S}^{d-1} is upper bounded by

$$\mathcal{N}(\mathcal{S}^{d-1},\varepsilon) \le \left(\frac{2}{\varepsilon}+1\right)^d$$

ℓ_2 norm of sub-Gaussian random vector

- Goal: upper bounding $\sup_{a \in \mathcal{S}^{d-1}} a^{\top} x$
- Step 1: pointwise concentration. For any fixed $a \in S^{d-1}$, we can use Hoeffding's inequality to get

$$\mathbb{P}(|\boldsymbol{a}^{\top}\boldsymbol{x}| \leq C_1 \sigma \sqrt{\log(1/\delta)}) \geq 1 - \delta$$

for some universal constant $C_1 > 0$

ℓ_2 norm of sub-Gaussian random vector

- Goal: upper bounding $\sup_{a \in \mathcal{S}^{d-1}} a^{\top} x$
- Step 1: pointwise concentration. For any fixed $a \in S^{d-1}$, we can use Hoeffding's inequality to get

$$\mathbb{P}(|\boldsymbol{a}^{\top}\boldsymbol{x}| \leq C_1 \sigma \sqrt{\log(1/\delta)}) \geq 1 - \delta$$

for some universal constant $C_1 > 0$

• Step 2: uniform concentration over an 1/2-net. Let $\mathcal{N}_{1/2}$ be the smallest 1/2-net of \mathcal{S}^{d-1} . By union bound argument and Theorem 3.7,

$$\mathbb{P}\big(\sup_{\boldsymbol{a}\in\mathcal{N}_{1/2}}|\boldsymbol{a}^{\top}\boldsymbol{x}|\leq C_{2}\sigma\sqrt{d\log(1/\delta)}\big)\geq 1-\delta$$

for some universal constant $C_2 > 0$

ℓ_2 norm of sub-Gaussian random vector

- Goal: upper bounding $\sup_{a \in \mathcal{S}^{d-1}} a^{\top} x$
- Step 1: pointwise concentration. For any fixed $a \in S^{d-1}$, we can use Hoeffding's inequality to get

$$\mathbb{P}(|\boldsymbol{a}^{\top}\boldsymbol{x}| \leq C_1 \sigma \sqrt{\log(1/\delta)}) \geq 1 - \delta$$

for some universal constant $C_1 > 0$

• Step 2: uniform concentration over an 1/2-net. Let $\mathcal{N}_{1/2}$ be the smallest 1/2-net of \mathcal{S}^{d-1} . By union bound argument and Theorem 3.7,

$$\mathbb{P}\big(\sup_{\boldsymbol{a}\in\mathcal{N}_{1/2}}|\boldsymbol{a}^{\top}\boldsymbol{x}|\leq C_{2}\sigma\sqrt{d\log(1/\delta)}\big)\geq 1-\delta$$

for some universal constant $C_2 > 0$

• Step 3: approximation. By Theorem 3.6,

$$\mathbb{P}(\|\boldsymbol{x}\|_2 \le C_3 \sigma \sqrt{d \log(1/\delta)}) \ge 1 - \delta$$

for some universal constant $C_3 > 0$

Operator norm of sub-Gaussian random matrix

- Goal: upper bounding $\sup_{a,b\in S^{d-1}} a^{\top}Xb$
- Step 1: pointwise concentration. For any fixed $a, b \in S^{d-1}$, we can use Hoeffding's inequality to get

$$\mathbb{P}(|\boldsymbol{a}^{\top}\boldsymbol{X}\boldsymbol{b}| \leq C_1 \sigma \sqrt{\log(1/\delta)}) \geq 1 - \delta$$

for some universal constant $C_1 > 0$

Operator norm of sub-Gaussian random matrix

- Goal: upper bounding $\sup_{a,b\in\mathcal{S}^{d-1}}a^{\top}Xb$
- Step 1: pointwise concentration. For any fixed $a, b \in S^{d-1}$, we can use Hoeffding's inequality to get

$$\mathbb{P}(|\boldsymbol{a}^{\top}\boldsymbol{X}\boldsymbol{b}| \leq C_1 \sigma \sqrt{\log(1/\delta)}) \geq 1 - \delta$$

for some universal constant $C_1 > 0$

• Step 2: uniform concentration over an 1/4-net. Let $\mathcal{N}_{1/4}$ be the smallest 1/4-net of \mathcal{S}^{d-1} . By union bound argument and Theorem 3.7,

$$\mathbb{P}\big(\sup_{\boldsymbol{a},\boldsymbol{b}\in\mathcal{N}_{1/4}}|\boldsymbol{a}^{\top}\boldsymbol{X}\boldsymbol{b}| \leq C_{2}\sigma\sqrt{d\log(1/\delta)}\big) \geq 1-\delta$$

for some universal constant $C_2 > 0$

Operator norm of sub-Gaussian random matrix

- Goal: upper bounding $\sup_{a,b\in\mathcal{S}^{d-1}}a^{\top}Xb$
- Step 1: pointwise concentration. For any fixed $a, b \in S^{d-1}$, we can use Hoeffding's inequality to get

$$\mathbb{P}(|\boldsymbol{a}^{\top}\boldsymbol{X}\boldsymbol{b}| \leq C_1 \sigma \sqrt{\log(1/\delta)}) \geq 1 - \delta$$

for some universal constant $C_1 > 0$

 Step 2: uniform concentration over an 1/4-net. Let N_{1/4} be the smallest 1/4-net of S^{d-1}. By union bound argument and Theorem 3.7,

$$\mathbb{P}\big(\sup_{\boldsymbol{a},\boldsymbol{b}\in\mathcal{N}_{1/4}}|\boldsymbol{a}^{\top}\boldsymbol{X}\boldsymbol{b}| \leq C_{2}\sigma\sqrt{d\log(1/\delta)}\big) \geq 1-\delta$$

for some universal constant $C_2 > 0$

• Step 3: approximation. By Theorem 3.6,

$$\mathbb{P}\big(\|\boldsymbol{X}\|_2 \le 2C_2\sigma\sqrt{d\log(1/\delta)}\big) \ge 1-\delta$$

for some universal constant $C_3 > 0$

- Let \mathcal{F} be a class of binary functions on the domain \mathcal{X} .
- Shattering: a set of points $\{x_1, \ldots, x_k\} \subseteq \mathcal{X}$ is shattered by \mathcal{F} if for every possible labeling $\{0,1\}^k$, there exists a function $f \in \mathcal{F}$ that realizes the labeling.
- The **VC** dimension of \mathcal{F} , denoted VC(\mathcal{F}), is the largest integer k such that there exists a set of k points in \mathcal{X} that can be *shattered* by \mathcal{F} .
- Examples:
 - $\circ~$ When $\mathcal{X}=\mathbb{R}^2,~\mathcal{F}=$ linear classifiers, we have $\mathsf{vc}(\mathcal{F})=3$
 - $\circ~$ In general, when $\mathcal{X}=\mathbb{R}^d$, $\mathcal{F}=$ linear classifiers, then $\mathsf{vc}(\mathcal{F})=d+1$

$$\widehat{f}_n = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{f(X_i) \neq Y_i\} \eqqcolon R_n(f)$$

Theorem 3.8

Suppose that \mathcal{F} is a class of Boolean function with $vc(\mathcal{F}) < \infty$. Then with probability exceeding $1 - \delta$,

$$R(\widehat{f}_n) - R(f^\star) \le C\sqrt{\frac{\mathsf{vc}(\mathcal{F})\log(1/\delta)}{n}}$$

for some universal constant C > 0.

Implications:

• For $\mathcal{F} =$ linear classifiers in \mathbb{R}^d , the excess risk is $O(\sqrt{d/n})$.