STAT 615: Statistical Learning

Classification: Part 2

Yuling Yan
University of Wisconsin—Madison, Fall 2024



Tree-based methods



Classification tree

South African heart disease data:
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Classification tree

Setup: X =R, Y ={1,..., K}, training data (X1,Y1),...,(Xn,Ys)

Idea: grow a tree to recursively partition the feature space into a set of
rectangles, and do a simple majority vote in each rectangle

e Each node represents a rectangle in the feature space. The root node is
the feature space X = R?

Each node is either a leaf (no children) or a parent (has two children)

The left and right children comes from a partition of their parent node

e Suppose we have a collection of final partitioned regions associated with
the leaves at the bottom of the tree, denoted by Ry, ..., Ry,

e For any input x, suppose that € R;, then this classification tree returns

~

f(@) =argmax »  1{Y; = k}

X; GR]‘

i.e., the predicted label is the majority in the region R;
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How to grow a classification tree?

In order to grow a classification tree, we need to ask:

1. How to split each parent node?

2. How large should we grow the tree?

For the first question: minimizing impurity

e Suppose that the parent node is associated with a rectangle R

o Choose a covariate X; and a split point ¢ that minimizes the impurity

e Let the rectangles associated with its left and right children be
Ri(j,t) ={X €eR:X; <t} and Ry(j,t)={X € R:X, >t}

For the second question: set some stopping criteria.

e For example, we may fix some number ng, and we might stop partition a
node when its associated rectangle has fewer than ng training data points.
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Impurity function

Let R be the node to be split into two regions. We choose

e min FL0-1) LT

Jot |R|
impurity function

V(R1(4,1)) + V(Ra(4,1)),

o Here y(R) measures the “variance” of the labels of data in R: we want

{Y;: X; € R} to have low variability
e For any given rectangle R, let

1
P = — Z I{Y; =k}, 1<k<K.
|R‘ X;eR
Two common choice of the function ~(-):
o Gini index: v(R) =Y, pr(1 — pr)
o Cross entropy: v(R) = — ), prlogpk

Classification: Part 2
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Insights

e advantage: the tree structure provides great interpretability

o for example, it allows reasoning about the cause of diseases

e disadvantage: instability due to the use of greedy search:

o splitting process is greedy
o small changes in the training data can lead to significantly different
tree structures

e Solutions:

o Regularization: controlling tree growth parameters

o Pruning: removing branches that do not provide significant
predictive power

o Ensemble Methods: use bagging to create a random forest
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Bootstrap aggregating (Bagging)

e Training data Z, = {(X,,Y;),1 <i<n}
e Bootstrap sample Z(*0) = {(Xi(*b),Yi(*b)), 1 <i<n}: sample n data
points randomly from Z,, with replacement

o Apply the learning algorithm to the bootstrap sample for B times, and
produce outcomes f;

e Majority vote: fb288M8(z) = arg maxjcy Zle 1{fp(z) = k}

MBI Bootstrap sample T} (x)
BN Bootstrap sample Ty (x)
The training data [l
L e o -
BN Bootstrap sample . Th(x) —
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Insights

Trees generated in bagging are identically distributed (not independent!)
Bias of bagged tress is the same as the individual tree

Pro: Reduce the variance, so good for high-variance, low-bias procedures,
like trees.

Heuristics: Suppose we have B identically distributed random variables
with variance o2 and positive pairwise correlation p, then their average
has variance of 1
po? + I P2
Increasing B does not reduce the first term
— Random Forest!
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Random forests

e Key idea: use random dropout to decorrelate bootstrapped trees

_

—

Classification: Part 2

Typical values for m is Vd.
Majority vote: fRF(z) = arg maxyey Zle 1{fola) =k}

Bootstrap sample

Bootstrap sample

NN Bootstrap sample

randomized

randomized

randomized

randomized

Ti(x)

Final Classifier

When growing a tree on a bootstrapped sample, before each split of the
node, select m < d variables at random as candidates to split



How to remove bias: Boosting

o Setup: X =R?, Y = {1}
e Weak classifier: error rate only slightly better than random guess

o Key idea: sequentially apply weak classification algorithm to repeatedly
modified versions of the data to produce a sequence of weak classifiers
o assign unequal weights to training data points
— possible for trees
o sequentially find a committee of weak classifiers {fm M

m=1

o produce the final prediction through a weighted majority vote

o~ M ~
f(x) = sign(z [ ()

m=1
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AdaBoost

Initialization: set the weights w; = 1/n for 1 <i <n.
Form=1,...,M:

Compute the weighted misclassification error:

S w I{Y; # J/C\m(Xi)}'

(m) _
err'™) = =
Dic1 Wi
e Compute:
1 —err(m)
am = log (7err(m) )
e Update the weights by:

w; < w; + exp (ozm']l{Yi * fm(Xz)}), 1=1,2,...,

Output: f(z) = sign( XM, @ fin(2)).

Classification: Part 2

Fit a weak classifier fm(x) using training data with weights wy, ...

7w71



AdaBoost: insights

Key idea: in the weight update step

W; — W; - exp (am~]l{Yi # fm(Xi)}), 1=1,2,...,n.

e For incorrectly classified data points, their weights get inflated by e*m

e Note that a,, > 0 should always hold

e This re-weighting encourages the next classifier to focus more on the
misclassified data points

Classification: Part 2



Discussion: three main approaches to classification



Three main approaches

Bayes optimal classifier: for any x € X, output
ff(x)=argmax PY =y | X = x)
yey
minimizes the Bayes risk R(f) =P(f(X) #Y)

Classification: Part 2



Three main approaches

Bayes optimal classifier: for any x € X, output

) =argmax PY =y | X =x)
yeY

minimizes the Bayes risk R(f) =P(f(X) #Y)

e Plug-in approach: model data distribution p, then estimate densities
PX =z |Y =y PY =y)

YyeyPX =z |Y =y)PY =y)

PY=y|X=2)=
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Three main approaches

Bayes optimal classifier: for any x € X, output

() =argmax PY =y | X = x)
yey

minimizes the Bayes risk R(f) =P(f(X) #Y)
e Plug-in approach: model data distribution p, then estimate densities
P(X =z |Y =y)P(Y =
P(Y =y | X =) = X =2|Y=yPY =y
YyeyPX =z |Y =y)PY =vy)

Example: LDA, QDA, Kernel density classifier
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Three main approaches

Bayes optimal classifier: for any z € X, output

() =argmax PY =y | X =x)
yeY

minimizes the Bayes risk R(f) = P(f(X) #Y)
e Plug-in approach

e Regression: modeling and estimating each

r(z) =PY =k | X =x) for k=1,...
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Three main approaches

Bayes optimal classifier: for any x € X, output

) =argmax PY =y | X =x)
yeY

minimizes the Bayes risk R(f) = P(f(X) #Y)
e Plug-in approach

e Regression: modeling and estimating each

rp(x) =P(Y=k| X =2) for k=1,...

Example: logistic regression

Classification: Part 2



Three main approaches

Bayes optimal classifier: for any x € X, output

) =argmax PY =y | X = x)
yeY

minimizes the Bayes risk R(f) = P(f(X) #Y)
e Plug-in approach
e Regression

e Empirical risk minimization: choose a set of classifiers F and find fe F
that minimizes the “empirical risk":

Ralf) = = S 1{A(X0) £ i)

Intuition: when n is large, R, (f) =~ R(f) by LLN
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Three main approaches

Bayes optimal classifier: for any x € X, output

ff(x)=argmax PY =y | X = x)
yeY

minimizes the Bayes risk R(f) =P(f(X) #Y)
e Plug-in approach

e Regression

e Empirical risk minimization

e Other approaches: SVM, tree-based methods...

Classification: Part 2 3-15



ERM: advantages

~ 1
fn= ar}g;en;m - ; 1{f(X;) #Yi} = R,(f)

e a straightforward method based on simple heuristics
— robustness!

e can be easily generalized to other loss ¢(-,) by considering
1 n
Ru(f) == Uf(X:),Y)
i=1

if the ultimate goal is to minimize R,(f) = E[¢(f(X),Y)]. For example,
in binary classification (i.e., Y = {0,1})

o Hinge loss ¢(f(x),y) = max{0,1 — yf(x)}
o Logistic loss £(f(z),y) = log(1 + exp(—yf(x)))

— Logistic regression can also be viewed as ERM!
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ERM: disadvantages

Fn _argmmfZ]l{f i) # Yi} = Ru(f)

fer

o Not easy to compute (due to nonsmoothness of the indicator function)

e Solution: in binary classification (i.e., Y = {0,1}), consider using hinge
loss or logistic loss ¢(-)

and relax f : R? — R, and finally output sign(2(f(z) — 1))

e Here we will only focus on the standard ERM

Classification: Part 2



ERM: error decomposition

fnfargmmlel{f ) # Yi} = Ru(f)

fer

e We want to control the excess rlsk

R(fa) = B(f*) = R(fx) — min R(f) +min R(f) — R(f*)

>0, statistical error >0, approximation error

e approximation error: becomes smaller when choosing larger F

— becomes 0 when f* € F

e statistical error: becomes smaller when n becomes larger, and when
choosing smaller F (why?)

o trade-off between fit and complexity
e In this course, we will focus on understanding statistical error with a given

F that includes f* (so that approximation error = 0)

Classification: Part 2 3-18



Excess risk via uniform deviations

f—argmmlel{f ) # Yi} = Ru(f)

fer

Theorem 3.1
The excess risk is upper bounded by

R(fn) — R(f*) < 2sup |Ra(f) — R(f)|

feF

Implications:

e For a given f, we know that R, (f) — R(f) at a rate O(1/+/n) by CLT
Vi(Bu(f) = B() 5 N(O.var(L{f(X) # Y })

e But what about the uniform convergence of sup;c z |Rn(f) — R(f)|?

Classification: Part 2 3-19



Concentration inequalities and uniform convergence



Why concentration inequalities?

Consider i.i.d. variables X7, ..., X,, with E[X;] = u and var(X;) = o2
e Central limit theorem (CLT):
1 n d
‘/ﬁ(ﬁ Z;Xi - u) 5 N(0,07)

tells us that the sample average concentrates around i, and the deviation
scales like o/+y/n as n — 00

e But this does not say anything useful when n is finite

e \We want some non-asymptotic statement like:
1 n
P(\nzx —u| ze(n,8) <6
1=

holds for any § > 0, where (n,d) > 0 is some quantity that depends on
the sample size n and the exceptional probability §
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A simple case with i.i.d. Gaussian

X, & N (p,0?), then we have

1 « 2
n n

Suppose that X1,...,

Theorem 3.2
For G ~ N(0,1) and any t > 0, we have

42
(& t/2.

1 1\ 1,
- — = )| — <P(G>t) <
(i-@) 7z rezns

~+ | =
[N
3

As a result,

P(‘i;&' ZEDE \n\ﬁ (- 5oa)

Classification: Part 2
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A simple case with i.i.d. Gaussian

Suppose that X1,..., X, P N (i, 0?), then we have
I 2
n n

Theorem 3.2
For G ~ N(0,1) and any t > 0, we have

42
(& t/2.

1 1\ 1,
- — = )| — <P(G>t) <
(i-@) 7z rezns

~+ | =
[N
3

As a result,
1 n nt2
P X n|2t) < e (- 5s)
n; ) ft 202

Question: how can we extend these to more general distributions?
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From Gaussian to sub-Gaussian

e Question: can we generalize these results to other random variables?

Idea: consider other random variables with similar tail probability

e From Theorem 3.2, we know that for G ~ N(0, 02),

PG| >t) <e /7" forallt >0

We may consider random variables satisfy this type of tail properties

— sub-Gaussian

Classification: Part 2 3-23



Sub-Gaussian properties

Let X be a random variable, then the following properties are equivalent:

1. The tails of X satisfy

P(|X|>t) < 2exp (—t*/K7) forall t>0

. The moments of X satisfy

X ||z» = E[XPP)? < Ka/p forall p>1

3. The moment generating function (MGF) of X? satisfies
E[exp(A’X?)] < exp(K3A?) for all X such that |A| < 1/K;
4. The MGF of X? is bounded at some point, namely

E[exp (X?/K3)] < 2.

5. f EX = 0, then the MGF of X satisfies

where K7, ..

E[exp(AX)] < exp(KZX\?) for all A € R.

., K5 > 0 may differ by at most a multiplicative constant factor

Classification: Part 2 3-24



Sub-Gaussian distributions: definition

e If X satisfies one of properties 1-4, it is a sub-Gaussian random variable.

o The sub-Gaussian norm of X, denoted || X||y,, is defined to be the
smallest K4 in property 4. In other words, we define

| X, = inf {t >0:Eexp (XQ/tQ) < 2} .
— can also be defined using K1, Ky or K3
e Properties: there exists some absolute constants ¢, C' > 0 such that

o P(IX|>1t) < 2exp(—ct?/|X]3,)

o | X|lzr < ClI Xy /P

o Eexp (X2/||X||fb2) <2

o if E[X] =0, then Eexp(AX) < exp(CA?[|X||2,)
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Sub-Gaussian distributions: examples

e Gaussian: if X ~ N(0,0?), then X is sub-Gaussian with
Xl < Co

for some universal constant C = 2,/2/3.

e Bounded: any bounded random variable X is sub-Gaussian with
[ Xy, < ClIX|loo

for some universal constant C = 1/+/log 2.

Sub-Gaussian norm can be viewed as a characterization of “magnitude” for
light tail distributions.

Classification: Part 2 3-26



Centering and independent sums

Theorem 3.3
o If X is sub-Gaussian, then X — E[X] is sub-Gaussian with
1X ~ E[X]lv, < ClI X,
where C is an absolute constant.

e let X1,...,XxN be independent, mean zero, sub-Gaussian random
variables. Then the sum Sy = va:l X, is also sub-Gaussian, and its
sub-Gaussian norm satisfies

N
2 2
ISn17, < CY X7,
i=1
where C is an absolute constant.

Analog:
o If Xy,...,X, areiid. N(0,02), then Sy ~ N (0, No?)
e If Xy,..., X, are independent with || X;||,, < o, then ||Sx |y, < VNo

Classification: Part 2 3-27




Hoeffding’s inequality

Theorem 3.4 (Hoeffding’s Inequality)

Let X4,..., Xy be independent, mean-zero, sub-Gaussian random variables.
Then, for any t > 0, we have:

ct?
P Z t S 2€Xp _N72 y
Zi:l ”Xi”w2

where c is an absolute constant.

N
>

i=1

Classification: Part 2
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Implications

o General Hoeffding: under the setup of Theorem 3.4, consider any vector
a=(ay,...,a,) € R™, we have

ct?

N
>0
i=1

e Example: suppose that X; ~ Bernoulli(p;) for 1 < i < n, then

2
IP’( 215) SZeXp(C;[),

A sharper result for binomial concentration: Chernoff's inequality (HW)

where K = max || X;||y,-

N

Z(Xi —pi)

i=1

Classification: Part 2 3-29



Back to ERM: finite F

Fa —arjgen;mgzﬂ{f i) # Yi} = Ru(f)
Theorem 3.5

Suppose that F is a finite set. Then with probability exceeding 1 — 9, the
excess risk of ERM is upper bounded by

R(,) - R() < 0y 128UF1/0),

n

for some universal constant C > 0.

e Key proof idea: union bound argument
e What if F is not finite (e.g., the set of linear classifiers)?
— use VC dimension!

Classification: Part 2 3-30




Back to ERM: finite F

f —argmlnEZIL{f ) # Y} = R,(f)

fer

Theorem 3.5

Suppose that F is a finite set. Then with probability exceeding 1 — 9, the
excess risk of ERM is upper bounded by

log(171/6)

R(f.) - R(f*) < C

for some universal constant C > 0.

e Key proof idea: union bound argument
e What if F is not finite (e.g., the set of linear classifiers)?

— use VC dimension!
e But before going into that, let's first warm up with something simpler

Classification: Part 2 3-30




/5 norm of a sub-Gaussian random vector

e Consider a random vector © = (X1,...,Xy), where X1,..., X, are
independent random variables with E[X;] = 0 and || X;||y, <o

e Can we establish a non-asymptotic upper bound for ||x||2?

Classification: Part 2
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/5 norm of a sub-Gaussian random vector

e Consider a random vector © = (X1,...,Xy), where X1,..., X, are
independent random variables with E[X;] = 0 and || X;||y, <o

e Can we establish a non-asymptotic upper bound for ||x||2?

e Solution 1: entrywise concentration and union bound

P(|zl2 < Cov/dlog(d/s)) >1—6

for some universal constant C > 0

Classification: Part 2
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/5 norm of a sub-Gaussian random vector

e Consider a random vector © = (X1,...,Xy), where X1,..., X, are
independent random variables with E[X;] = 0 and || X;||y, <o

e Can we establish a non-asymptotic upper bound for ||x||2?

e Solution 1: entrywise concentration and union bound

P(|zl2 < Cov/dlog(d/s)) >1—6

for some universal constant C' > 0
e Solution 2: uniform concentration using

|zl = sup a'z
acSi-1
where S?~1 := {x € R?: ||z||y = 1} is the unit sphere in R?

— could this provide a better concentration bound?

Classification: Part 2 3-31



Operator norm of sub-Gaussian matrix

o Consider a random matrix X = (X, j)i<i j<q With independent entries
that satisfies E[X; ;] = 0 and || X, ||y, < 0

o Can we establish a non-asymptotic upper bound for || X||?

e Operator norm:

|X|= sup |Xala= sup a'Xb
aceSd-1 a,beSd—1

where S9! := {z € R?: ||z|2 = 1} is the unit sphere in R?

Classification: Part 2 3-32



A framework for uniform concentration

Goal: upper bounding sup,cga-1 a'z
Step 1: pointwise concentration. For any fixed a € S%~1, we can use
Hoeffding's inequality to get

P(la"z| < Cov/log(1/6)) >1 -4

for some universal constant C' > 0

Difficulty: the unit sphere S¢~! is not a finite set, union bound argument
does not work

Idea: find a finite subset N of S?1 that is fine enough, such that

?
sup a'x < sup a' x < Cov/log(IN|/6)
acSd-1 aeN

with probability at least 1 — §
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Epsilon net

o Let (T,d) be a metric space. Consider a subset KX C T and let € > 0.
— e.g., consider T = R?, d(-,-) is Euclidean distance, K = Sd-1
e A subset N C K is called an e-net of K if every point in K is within

distance ¢ of some point of IV, i.e.,

Vee K, JzgeN st d(z,xg)<e

Theorem 3.6
Let N. be an e-net of S*~ 1. If¢ < 1, then for any x € R4,

1
sup a'w < sup a'x < sup aTa:,
acN, acSd—1 — € aeN.

and if e < 1/2, then for any X € R%*4,

sup a' Xb< sup a'Xb< sup a'Xb.
a,beN. a,becSi-1 1- € a,beN.
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The covering number

Covering number: the smallest possible cardinality of an e-net of K,
denoted by V(K ¢)

Theorem 3.7

The covering number of S*~' is upper bounded by

d
NS4 1Le) < (i + 1)

Classification: Part 2
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/5 norm of sub-Gaussian random vector

e Goal: upper bounding sup,cgi-1 a'x

e Step 1: pointwise concentration. For any fixed a € S%~1, we can use
Hoeffding's inequality to get

P(la"z| < Cioy/log(1/6)) > 16

for some universal constant C; > 0

Classification: Part 2 3-36



/5 norm of sub-Gaussian random vector

e Goal: upper bounding sup,cgi-1a'x

e Step 1: pointwise concentration. For any fixed a € S%~1, we can use
Hoeffding's inequality to get

P(la"z| < Cioy/log(1/6)) > 16
for some universal constant C; > 0

e Step 2: uniform concentration over an 1/2-net. Let /\/1/2 be the
smallest 1/2-net of S¢~!. By union bound argument and Theorem 3.7,

P( sup |a'z| < Coov/dlog(1/8)) > 14

a€N1/2
for some universal constant Cy > 0
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/5 norm of sub-Gaussian random vector

Classification: Part 2

Goal: upper bounding sup,cga-1 a'x

Step 1: pointwise concentration. For any fixed a € S%~!, we can use
Hoeffding's inequality to get

P(la"z| < Cioy/log(1/6)) > 16
for some universal constant C; > 0

Step 2: uniform concentration over an 1/2-net. Let /\/1/2 be the
smallest 1/2-net of S¢~!. By union bound argument and Theorem 3.7,

P( sup |a'z| < Coov/dlog(1/8)) > 14

a€N1/2
for some universal constant Cy > 0

Step 3: approximation. By Theorem 3.6,

P(|l]ls < Cso+/dlog(1/3)) > 1— 6

for some universal constant C3 > 0
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Operator norm of sub-Gaussian random matrix

e Goal: upper bounding sup, pcsi-1 a' Xb

e Step 1: pointwise concentration. For any fixed a,b € S, we can
use Hoeffding's inequality to get

P(la" Xb| < Cioy/log(1/5)) > 1 -6

for some universal constant C; > 0

Classification: Part 2 3-37



Operator norm of sub-Gaussian random matrix

Goal: upper bounding sup, pcsi-1 @' Xb

Step 1: pointwise concentration. For any fixed a,b € S, we can
use Hoeffding's inequality to get

P(la" Xb| < Cioy/log(1/5)) > 1 -6
for some universal constant C; > 0

Step 2: uniform concentration over an 1/4-net. Let N1/4 be the
smallest 1/4-net of S¢~!. By union bound argument and Theorem 3.7,

P( sup |a'Xb| < Cooy/dlog(1/8)) >1—6

a,bEN1/4

for some universal constant Cy > 0

Classification: Part 2
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Operator norm of sub-Gaussian random matrix

e Goal: upper bounding sup, pcsi-1 a' Xb

e Step 1: pointwise concentration. For any fixed a,b € S, we can
use Hoeffding's inequality to get

P(la" Xb| < Cioy/log(1/5)) > 1 -6
for some universal constant C; > 0

e Step 2: uniform concentration over an 1/4-net. Let N1/4 be the
smallest 1/4-net of S¢~!. By union bound argument and Theorem 3.7,

P( sup |a'Xb| < Cooy/dlog(1/8)) >1—6

a,bEN1/4
for some universal constant Cy > 0

e Step 3: approximation. By Theorem 3.6,

P(||[ X2 < 2C20+/dlog(1/6)) > 1 -6

for some universal constant C3 > 0
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VC dimension

e Let F be a class of binary functions on the domain X.

e Shattering: a set of points {x1,...,2;} C X is shattered by F if for
every possible labeling {0, 1}*, there exists a function f € F that realizes
the labeling.

e The VC dimension of F, denoted VC(F), is the largest integer k such
that there exists a set of k points in X’ that can be shattered by F.

e Examples:

o When X = R?, F = linear classifiers, we have vc(F) = 3
o In general, when X = R?, F = linear classifiers, then vc(F) =d + 1
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Bounding excess risk via VC dimension

Fu _argmmfZ]l{f ) # Yit = Ru(f)

fer

Theorem 3.8

Suppose that F is a class of Boolean function with vc(F) < oo. Then with
probability exceeding 1 — 6,

R(E) — R(f*) < ¢/ <) 108(1/9)

n

for some universal constant C > 0.

Implications:

e For F = linear classifiers in R, the excess risk is O(y/d/n).

Classification: Part 2
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