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Classification problem

Classification: assign a label (or category, class) to an observation based
on its features

X: input space (e.g. RY); V: output space (e.g. {1,2,...,K})

x € X' feature vector, input, data point...

y € YV: label, category, class...

Classifier: a mapping f: X — Y

Goal: construct a classifier f that accurately predicts the label y given the
features x
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MNIST dataset
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R28 x28 or R784

e Input: 28x28 gray scale (1 channel) images, i.e., X

e Output: digits 0 through 9 (i.e., ¥ ={0,1,..

5 9})
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CIFAR datasets
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e Input: 32 x 32 RGB color (3 channels) images, i.e., X = R32x32X3 or
R3072

e Output: 10 classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses,
ships, and trucks) or 100 classes
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ImageNet dataset

Ll 2 L R S aXE Wk E
i sy VIS TR DRl IrI i Bl 4 I.Tf
%4 Pl K] A B el ﬂu!k,‘
05 et @ WA | f
ST SEE sdt maL | =0 Bk
w7 < IIRE M il ==pzEa

vehicle craft — watercraft —— sailingvessel —  sailboat —  trimaran

H

e Input: varies, often high-resolution (often 224 x 224 x 3)

e Output: 1000 different categories
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Mathematical set-up

e Modeling assumption: the data (input-output pairs) come from an
underlying data distribution p over X x Y
e Training data: (z1,91),.-., (Tn,Yn) Hig- P

e Error metric: for any given classifier f, its risk, defined as the average
(expected) classification error on a new data is

R(f) = Pxy)p(f(X) #Y)

e Supervised learning: build a classifier f based on training data, that
makes the average classification error as small as possible
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Questions

e Does there exists a “best” classifier?

— this lecture

e Can we construct this “best” classifier with the information of p?

— this lecture

e What can we do when we only have a finite number of training data?

— first half of the semester
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Bayes optimal classifier: binary case

o Consider the binary case: J = {0,1}

e Define the Bayes classifier: for any x € X,

. 1, fPY=1|X=2)>2PY =0] X =x),
fr(@) = .
0, otherwise.

Theorem 2.1 (Bayes optimal classifier: binary case)

The Bayes classifier f* minimizes the misclassification error, i.e.,

fr € argmin Px y)~,(f(X) #Y).
f:X=Y

Classification
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Proof of Theorem 2.1

We need to show that, for any classifier f: & — ),

R(f) =P(f(X) #Y) = P(f*(X) #Y) = R(f")

By tower property,

P(f(X)#Y) =E [Lyx)2v]
=Ex [E [Lrx)zy | X]] (tower property)
=Ex [P(f(X)#Y [ X)]
>Ex [P(f*(X)#Y | X)]  (why?)
=Ex [E [Lf(x)»v | X]]
=E []lf*(X);gy] (tower property)
—B(f(X) £ ).

It suffices to check
Pf(X)£Y | X)2P(fF(X)#Y | X).
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Proof of Theorem 2.1 (cont.)

Observe that

) [Py =0]|X) fPY=1]|X)>
P(f(X)#Y|X)_{]p(Y:1|X) ifPY=1|X)>

=min{P(Y =1|X),PY =0 X)}

and
_JPY =0]X) if f(X)=1
P(f(X)#YlX)—{P(Y:HX) T o
zmin{IP’(Y:HX), (Y:O|X)}.
Therefore

P(fA(X) #Y | X) 2 P(f(X) #Y | X).
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A few remarks

Bayes optimal classifier

fPY=1|X=2)>2P(Y=0]| X =x),
(o) = {O (V=1]X=2)2P(Y =0 | X =2)
, otherwise.

e Depends on the true underlying data distribution p
e The optimal classifier might not be unique

e When X is discrete, it is equivalent to

. 1, fP(X=2,Y=1)>PX =2z,Y =0),
fr(@) = :
0, otherwise.

Classification
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Bayes risk: binary case

Bayes risk:
R* = Px vy, ([F(X) #Y)

The Bayes risk serves as a lower bound for the classification error that any
practical classifier can achieve:

R*:fr)r(nn Pixy)~mp(f(X) #Y).

It represents the inherent uncertainty in the classification problem due to
overlapping distributions of the classes.

Excess risk: R(f) — R*
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Bayes optimal classifier: multiclass setting

e Consider the multiclass case: Y = {1,..., K}

o Define the Bayes classifier: for any x € X,

ff(z) =argmaxP(Y =y | X =x)
yeY

Theorem 2.2 (Bayes optimal classifier: multiclass case)

The Bayes classifier f* minimizes the misclassification error, i.e.,

f* €argmin Py vy, (f(X) #Y).
[ X=Y

Classification
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Bayes optimal classifier: multiclass setting

e Consider the multiclass case: Y = {1,..., K}

o Define the Bayes classifier: for any x € X,

ff(z) =argmaxP(Y =y | X =x)
yeY

Theorem 2.2 (Bayes optimal classifier: multiclass case)
The Bayes classifier f* minimizes the misclassification error, i.e.,

f* €argmin Py vy, (f(X) #Y).
[ X=Y

Proof: similar to Theorem 2.1, it suffices to check for any classifier f

PAX)#Y [ X)2P(f(X)#Y | X).
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More general loss function?

e Consider more general loss function £: )Y x Y — R

e Define the risk for a classifier f : X — ) as
Ro(f) = Ex y)~pl(f(X),Y)]

e Example: with 0-1 loss 4(y,y’) = 1{y # y'}, we recover the average
classification error

R(f) =Px,y)~p(f(X) #Y)

e Goal: find f that minimizes the risk Ry(f) (the Bayes classifier might not
be optimal...)

Question: Can you think of settings where other types of loss functions are
more appropriate than the 0-1 loss?
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Example: traffic signs

SLOW SPEED
kk LIMIT
5

o

e YV = {stop sign, 50 mph, 40 mph}.

®

NO

PARKING

e Predicting 50 mph when it is actually a stop sign is worse than predicting
40 mph when it is actually 50mph.

e (-1 loss is not suitable here...

Classification
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Example: traffic signs

SLOW Q SPEED
. LIMIT
i 9

& Ji

NO
PARKING

e YV = {stop sign, 50 mph, 40 mph}.

e Predicting 50 mph when it is actually a stop sign is worse than predicting
40 mph when it is actually 50mph.

e (-1 loss is not suitable here...

We will discuss classification with general loss later if time permits

)

Classification
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Supervised learning

e Go back to 0-1 loss

e In practice, we don't know p. It is in general impossible to compute the
Bayes classifier f*

e Goal: build a classifier f : X — ) based on training data

i.i.d.
($15y1)7 RS} (xrmyn) " P

e Hope: achieve small excess risk R(f) — R*
e High-level framework:

o Make some modeling assumptions on p
o Design a good classifier f under this setup
o For example, a good classifier may satisfy

R(f) = R* < h(n)

where h(n) is a function of the sample size n describing the rate of
convergence, e.g., h(n) = O(1/n).
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Linear Methods for Classification



Linear classifiers

e Linear classifiers: decision boundaries are linear hyperplanes

o Hyperplane Hg g, = {x € R?: (B, z) + By = 0}
o Half planes cut by Hg g,:

Hg,ﬁg ={xcR: (B,z) + fo >0},
Hp ={x R (B,2) + fo <O}

o Example: in the binary case, the linear classifier has the form

flw) =1 € 1, }
e Three approaches to learn a linear classifier from the data:

o Linear discriminant analysis (LDA)
o Logistic regression
o Perceptrons and Support vector machines (SVMs)

Classification
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Linear discriminant analysis (LDA)

e Model set-up: X =R4, Y ={1,...,K}. Fork=1,..., K,
P(Y =k)=wyp, X |Y =k~N(u3)
where wy, > 0, Zle wr =1, pg ERd, by ESi

e The Bayes classifier under this setup: for any @, compute

_ 1 _
Op () =2 Sy — 5#112 Yy + logwy .

x log P(Y =k | X=x)+constant

Let f*(x) = arg max;<p<i 0k ().

e Issue: model parameters are unknown...

Classification
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Plug-in approach

Plug-in approach: replace the unknown parameters with reliable estimates

Suppose we have i.i.d. data (x1,91), ..., (Tn, Yn) RS p
Foreach 1 < k < K, let n, = Z?,l 1{y; = k} and

~ ng
E wla W = —
n

iyi=
e Estimate the covariance matrix
i)
“N_-K g
k=14y,=

Replace py, wi, X with fig, Ok, )

~

S R
Sp(x) =x'% 1#1«—5#;2 T, + log Wy

linear in @
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Generalization

e Consider a more general set-up: for kK =1,..., K, assume
P(Y = k) = wg, XY =k~N(u,Zi)

where wy, > 0, Zszl wr =1, ur € R, i € Si
e This setup will lead to the so-called quadratic discriminant analysis (QDA)
e Homework: derive QDA

o What is the Bayes classifier under this setup?
o How to derive a practical (data-driven) classifier?
o lIs this still a linear classifier?
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Logistic regression

e Model set-up: X =R%, Y ={0,1,...,K}. Let

exp(Bg  + o)

1+ S5 exp(Blx + o)
1

K )
1+ 30—y exp(B® + Bok)

where the parameters 3, € RY, o € Rfork=1,..., K

P(Y =k | x)= (1<k<K),

P(Y =0 | z)=

Classification
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Logistic regression

e Model set-up: X =R% x {1}, ¥ =1{0,1,...,K}. Let

.
P(Y =k | z) = e’;p(ﬁk@ —.  (k=1...K),
L+ 3 o exp(By )
1
P(Y =0 | @) = - —,
I+ Zk':1 eXP(/@}g/m)
where the parameters B, € R for k=1,..., K

e Bayes classifier:

Fx) = argmaxlSkSKﬁ;—w, if maxi<p<g ﬁ,;ra: >0,
0, otherwise.

o Estimate (3)'s: maximum likelihood estimation (MLE)
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Maximum likelihood estimation

Suppose we have i.i.d. data (x1,91), ..., (€n, Yn)

The negative log-likelihood function

:_*Z Z x, B + — Zlog 1+Zexp ﬂk/

k=14y,= k'=1

Maximum likelihood estimation (MLE)

~

B = arg mﬁin LB)

e Convex optimization: solve by e.g., gradient descent

Bt = Bt —nve(BY) (t=0,1,...)

Classification



A brief introduction to gradient descent

Gradient descent (GD) for solving mingera L(3):

Bt =p"—VL(B)  (t=0,1,..)
When 7 is properly small, GD satisfy the following properties:

e For smooth function L, GD is a descent algorithm: L(3'*1) < L(B")

e For convex + smooth function L, GD satisfies
L(B") - L(B*) <O (M) (t=0,1,...)
for any minimizer B*
e For strongly convex + smooth function L, GD satisfies
1B =B 2 < (L =r)[B° =B (t=0,1,...)

for some k € (0,1), where B8* is the unique minimizer

Classification
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Stochastic gradient descent

Consider the following empirical risk minimization problem

min L(3 x;)
min Zg B
where x1,...,x, are training data points.

e Stochastic gradient descent: for t =0,1,...,
Bt = 8" —nVg(Blix;,) where ;, " Unif{x1,...,@n}
e Gradient descent: fort =0,1,...,
pitt =g —VL(B') = 8" - n% En: Vy(B;x:i)
i=1

e Advantage of SGD: much faster updates, especially for large datasets,
but still enjoys nice properties (sometimes even better than GD!)
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Gradient descent methods

Example: GD / SGD for logistic regresion

Take-away: (stochastic) gradient descent is the default method for
solving unconstrained optimization problem
— simple and effective!

Recommended reading materials: Lecture 1 and 10 of the course

Large-Scale Optimization for Data Science

by Prof. Yuxin Chen (UPenn); Lecture on GD and SGD
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https://yuxinchen2020.github.io/large_scale_optimization/lectures/grad_descent_unconstrained.pdf
https://yuxinchen2020.github.io/large_scale_optimization/lectures/stochastic_gradient.pdf

Perceptrons and SVMs



Linearly separable data

e Consider binary classification: X =R% and J = {1, -1}

e Training data: (x1,y1),. .., (Tn,Yn)

e Linearly separable data: 3J a separating hyperplane Hg g, s.t.
yi- (@ B+pB)>0 (i=1,...,n)

Classification
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Linearly separable data

Consider binary classification: X = R% and Y = {1, -1}

Training data: (x1,v1),...,(Tn,Yn)

Linearly separable data: 3 a separating hyperplane Hg g, s.t.
yi (@] B+B) >0 (i=1,...,n)

by merging [y into B and adding 1 to x;'s, this assumption
becomes: 3 Bsep € R

yi-a:;r,Bsep>0 (i=1,...,n)

Classification
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Linearly separable data

Consider binary classification: X = R% and Y = {1, -1}

Training data: (x1,v1),...,(Tn,Yn)

Linearly separable data: 3 a separating hyperplane Hg g, s.t.
yi (@] B+B) >0 (i=1,...,n)

by merging [y into B and adding 1 to x;'s, this assumption
becomes: 3 Bsep € R

yi-a:;r,Bsep>0 (i=1,...,n)

Goal: search a separating hyperplane indexed by B
yi-m;r,@>0 (i=1,...,n)

(note that Beep is not known a priori)
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Perceptron Learning Algorithm

o For every B € R¥*!, define the set Mg ={i:y;- a:;rﬁ <0}

. misclassified points
e Target: minimize the perceptron loss

a(B) = — Z yi -z B ox Z dist(x;, Hg)

iEMpg icEMp
where Hg = {z : 23 = 0}
o Algorithm: initialize with 3° € R4+ for t =0, 1,..., update

Bt = B' + nyixz;, for a random i € Mg

where 17 > 0 is the step size; in fact, we can take n =1 here...

Classification
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Perceptron Learning Algorithm

For every 3 € R, define the set Mg ={i:y;- a:;rﬁ <0}

misclassified points

e Target: minimize the perceptron loss

a(B) = — Z yi -z B ox Z dist(x;, Hg)

iEMpg iEMpg
where Hg = {z : "3 = 0}
o Algorithm: initialize with B3° € R4+ for t =0, 1,..., update
Bt = B' + y;x;, for a random i € Mgt
o Interpretation: SGD with step size 1 (kind of...)

Classification



Convergence theory

Theorem 2.3

When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.
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Convergence theory

Theorem 2.3

When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:

e solutions not unique: might converge to an unstable hyperplane
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Convergence theory

Theorem 2.3

When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:

e solutions not unique: might converge to an unstable hyperplane
— resort to “optimal separating hyperplane”
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Convergence theory

Theorem 2.3

When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:

e solutions not unique: might converge to an unstable hyperplane
— resort to “optimal separating hyperplane”

e only works linearly separable data. If the classes cannot be
separated by a hyperplane, the algorithm will not converge
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Convergence theory

Theorem 2.3

When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:

e solutions not unique: might converge to an unstable hyperplane
— resort to “optimal separating hyperplane”

e only works linearly separable data. If the classes cannot be
separated by a hyperplane, the algorithm will not converge

e the “finite” number of steps can be very large
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Optimal separating hyperplane

From now on, we “unmerge” By from 3, as they play different roles.
Consider the optimization problem

max M st oy B+G) =M (i=1,...n
18ll2=1,50,M yi(z; B+ Po) ( )

Classification
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Optimal separating hyperplane

From now on, we “unmerge” 3y from 3, as they play different roles.
Consider the optimization problem

max M st y(x/B+B)>M (i=1,...,n)
IBll2=1,B0,M

Implications:

o the distance between x and the hyperplane Hg g, is

187z + fo| +Bo\ i [8lla=1

T

diSt(.’B, Hﬁﬂo) =
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Optimal separating hyperplane

From now on, we “unmerge” By from 3, as they play different roles.
Consider the optimization problem

max M st oy B+G) =M (i=1,...n
18ll2=1,50,M yi(z; B+ Po) ( )

Implications:
e the distance between = and the hyperplane Hg 5, is |3 = + S|
e offers a unique solution that maximizes the margin M

e Margin: the distance between Hg g, and the closest data points from
each class support vectors
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Optimal separating hyperplane

From now on, we “unmerge” By from 3, as they play different roles.
Consider the optimization problem

max M st oy B+G) =M (i=1,...n
18ll2=1,50,M yi(z; B+ Po) ( )

Implications:
e the distance between = and the hyperplane Hg 5, is |3 = + S|
e offers a unique solution that maximizes the margin M

e Margin: the distance between Hg g, and the closest data points from
each class support vectors

e Intuition: a large margin on the training data will lead to good separation
on the test data.
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Reformulation as convex optimization

e Original problem:

"y M st yi(z{ B+ >M (i=1,...,n
18]12=1,80,M yi(z] B+ Bo) ( )

e Issue: this is not a convex optimization problem...

Classification
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Reformulation as convex optimization

e Original problem:

"y M st gz B+ >M (i=1,...,n
18]12=1,80,M yi(z] B+ Bo) ( )

e Issue: this is not a convex optimization problem...

o Reformulation:
min B3 st @ B+F) =1 (i=1,....n)
120

this is a convex optimization problem

Classification
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Reformulation as convex optimization

Original problem:

"y M st gz B+ >M (i=1,...,n
18]12=1,80,M yi(z] B+ Bo) ( )

Issue: this is not a convex optimization problem...

Reformulation:

min B3 st @ B+F) =1 (i=1,....n)
P20

this is a convex optimization problem

This is known as the support vector machine (SVM)
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SVMs for separable data

1 _
min  — |83 st wi(®/B+B)>1 (i=1,...,n)
B.Bo 2

SVM is a powerful method for binary classification

e finds a linear classifier with decision boundary {@ : T3 + 3 = 0} to
separate two classes with the maximum margin

This is only feasible for linearly separated data
— can be generalized to accommodate non-separable data

What can we say about SVM?
— resort to duality theory!
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Convex optimization and duality theory



Primal problem and Lagrangian function

Consider a convex optimization problem:

min f(x) st g(x) <0 (i=1,...,m).
zcR4

where f(x) and g;(x) are convex functions

This is called the primal problem
e To handle the constraints, we introduce Lagrange multipliers \;

e The Lagrangian function is:

L(z,A) = f(z) + Z Aigi(x)

What is the benefit of introducing the Lagrangian function?

Classification



The Dual Problem

Key observation:

min f(x) 9 1nin max L(z,\) > maxmin L(z,A) = max d(A)
x:g(x)<0 T A>0 A>0 = A>0
—_——— —

primal problem

relation (i) and (ii) always holds (why?)

relation (ii) is often an equality (strong duality theory)
The dual function d(A) = ming L(x, )

The dual problem is to maximize the dual function d(\):

e )

Classification
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Strong and Weak Duality

Weak Duality: For any x feasible in the primal and any A > 0, we have:
d(A) < f(=)

Strong Duality: If the problem satisfies certain conditions (e.g., Slater’s
condition), then:
i = d(A
glafea” () = 25 AV

e Slater’s condition: the feasible region has an interior point, i.e.,
Jxg €RY st gi(xo) <0 (i=1,...,m).

e In convex optimization, strong duality often holds, meaning the primal
and dual problems have the same optimal value.

Classification



KKT Conditions

The Karush-Kuhn-Tucker (KKT) conditions: if strong duality holds, and
(x, A) is the optimal solution pair for the primal/dual problem

poin @) = maxd(A),
primal problem  dual problem
then
e Primal feasibility: ¢;(x) <0
e Dual feasibility: \; >0
e Complementary slackness: \;g;(x) =0
e Stationarity: Vf(z) + > .~ \iVgi(z) =0

— This is a necessary condition!
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Back to SVMs

. 1 )
min -85 st w(z/B+B)>1 (i=1,...,n)
B.Bo 2

e The dual problem for SVM is (why?):
n
max Zal - = ZZaZaJytyjm T; s.t Zaiyi =0,0;, >0
=1 j=1 =1

e |t is straightforward to check that Slater's condition holds
— primal and dual problems are equivalent!

e The dual problem is a quadratic programming problem, which is easier to
compute with standard software (e.g. CVX)
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Checking KKT conditions

. 1 .
(P) min f||5||§ s.t. yi(:c;-rﬁ—i—ﬂo) >1 (i=1,...,n)
B,Bo 2

(D) max iai — %iiaiajyiyj:c;wj s.t. iaiyi =0,0; >0
i=1 i=1 j=1 i=1
The Karush-Kuhn-Tucker (KKT) conditions for optimality:
e Primal feasibility: y;(3"z; + ) > 1
e Dual feasibility: a; >0
e Complementary slackness: «o;[y;(8"z; + 30) —1] =0

e Stationarity: 3 =" | oyx;
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Implications

For any optimal solution pair (3%, 8§, o*):

e Support vectors: data points x; with a; > 0

v(B T+ 8 >1 = =0
>0 = y(B Tz +p)=1

e Recovering the primal solution: after solving the dual problem (i.e.,
finding o), we can recover the primal solution (8*, 35) by

n

* *

B8 :§ Q; Yidg
i=1

and 35 = y; — B x; for any support vector x;

— [3* is a linear combination of the support vectors
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Accommodating non-separable data

SVM for linearly separable data:

1 _
min - [|B3 st wi(®/B+B)>1 (i=1,...,n)
B.Bo 2

e For non-separable data, we introduce slack variables &; > 0 to allow
violations of the margin:

min, f||5||2 +CY &
B.Bo, =1

st. (B zi+B)>1-6& &>0 (i=1,....n)

e (' > 0is the “cost” parameter

e the separable case corresponds to C' = oo

Classification
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Dual problem: non-separable data

e Primal problem:

2
_ + C i
ﬁmﬁn}& 2||5|| E &

sty (87 fBH—ﬁo)Zl—fu §&>0 (i=1,...,n)

e Dual problem:

max Zaz ZZQ ajylyja: T;

11]1

Zaiyizo, 0<o;<C (i=1,...,n)

e Homework: derive the dual problem from the primal problem

Classification
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Dual problem: non-separable data

e Primal problem:

2
_ + C i
ﬁmﬁn}& 2||5|| E &

sty (87 fBH—ﬁo)Zl—fu §&>0 (i=1,...,n)

e Dual problem:

max Zaz ZZQ ajylyja: T;

11]1

Zaiyizo, 0<o;<C (i=1,...,n)

e Homework: derive the dual problem from the primal problem
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Kernel density classifier and naive Bayes classifier



Recap: Bayes optimal classifier

Bayes optimal classifier: for any x € X, output

f () =argmax P(Y =y | X = x)
yeY

e |ssue: depends on unknown data distribution p

Classification
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Recap: Bayes optimal classifier

Bayes optimal classifier: for any x € X, output

f () =argmax P(Y =y | X = x)
yeY

e |ssue: depends on unknown data distribution p

e Bayes formula:
PX =z|Y =y PY =y)
Yy PX =z |Y =y)PY =vy)

— Is it possible to estimate these quantities?

PY =y| X =2) =
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Recap: Bayes optimal classifier

Bayes optimal classifier: for any z € X, output

f ) =argmax P(Y =y | X = x)
yeY

e |ssue: depends on unknown data distribution p

e Bayes formula:
PX =z Y:ny\’Y:y
P —y| X =)= ==Y =P =)
YyeyPX =z |Y =y)PY =y)

— Is it possible to estimate these quantities?

e Plug-in method:

o marginal probabilities P(Y = y) are easy to estimate (use frequency)
o key difficulty: estimate conditional densities P(X =z | Y = y)
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Detour: density estimation



Setup: density estimation

e Target: an unknown density function f

e What we have: i.i.d. data X1,..., X, ~ f

e Goal: construct a good density estimation f(-) that satisfy

f(x) >0 and /1 fla)dz =1
0

Classification

2-48



Setup: density estimation

e Target: an unknown density function f

e What we have: i.i.d. data X1,..., X, ~ f

Goal: construct a good density estimation f(-) that satisfy

f(x) >0 and /1 fla)de =1
0

Criteria: mean integrated squared error (MISE)

MISE(f) = IE[/ (flz) - f(:c))zdw}

Classification
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Setup: density estimation

e Target: an unknown density function f

e What we have: i.i.d. data X1,..., X, ~ f

Goal: construct a good density estimation f(-) that satisfy

f(x) >0 and /1 fla)de =1
0

Criteria: mean integrated squared error (MISE)

MISE(f) = IE[/ (flz) - f(:c))de}

Density estimation: find fwith as small MISE as possible

o Histogram method
o Kernel density estimation

Classification

2-48



Bias-variance tradeoff

Mean integrated squared error (MISE):
MiSE(F) = | [ (Fle) - 1)’

e Bias: Measures how far the estimated density is from the true density on
average.

o~

e Variance: Measures how much f(z) fluctuates around its mean:

v(z) = var(f(z)) = E[(f(z) — E[f(2)])*]
Theorem 2.4

MISE(f) = / b?(z)dz + / o(z)dz
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A simple approach: histogram

Histogram method: estimate the density by partitioning the interval and
counting the frequency of data points in each partition

Histogram of Age at Death of Australian Males, 2012

0.030

0.020
L

Density

0.010
1

0.000

r T T T T 1
0 20 40 60 80 100

Age at Death of Australian Males, 2012

— credit to R.J. Qosterbaan
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Histograms

o Consider 1D setting, and assume that f(-) is supported on [0, 1]

— we can always rescale the data to [0, 1]

e The data is divided into m bins of equal width h = 1/m (bandwidth)

1 1 2 —1
Blz|:0,>7 B2:|:7>a 7Bm:|:m 71:|
m m m m

e Each bin is assigned a probability proportional to the number of
observations falling into that bin:

f?\l/h, S Bl7 n

: . ~ 1
flz) = : : where p; = - Z]l{Xi € B;}.
D/h, ¥ € By, -
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Optimal bandwidth

Theorem 2.5 (informal)

Under some regularity conditions, we have

MISE(f) / F(u

e The optimal bandwidth choice is

e | 6 1/3
- nl/3 (ff'(U)zdu>

o With this choice of h*, we have

MISE(f) ~ ¢ where C = (%)2/3(/f’(u)2d

n2/3
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Cross-validation

Issue: the optimal bandwidth A* depends on the unknown density f

Idea: estimate the risk under each bandwidth selection A

L(h) = / (Flw) — f(a))*de = / () -2 / Foysns+ [ Feaa

=:J(h)

Cross-validation estimate of the risk:

Ty = [ Pade - 23" Foo ()

~

It can be shown that J(h) = E[J(h)]

~

Cross validation: select h that minimizes J(h)
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Cross-validation

e [ssue: the optimal bandwidth h* depends on the unknown density f

o Idea: estimate the risk under each bandwidth selection h

L(h) = / (Flw) — f(a))*de = / () -2 / Foysns+ [ Feaa

=:J(h)

e Cross-validation estimate of the risk:

Ty = [ Pade - 23" Foo ()

~

e It can be shown that J(h) =~ E[J(h)]

~

e Cross validation: select i that minimizes J(h)

e HW: prove the formula below that allows efficient computation of J(h):
~ 2 n+1 e~
J(h) = - :
(h) (n—1)h n-1 Pi

j=1
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Limitation of the histogram method

Histograms are discontinuous (not a continuous density)
e The convergence rate O(n~2/3) is not ideal

Complicated in higher dimension (number of bins will be exponential in
dimension)

A better solution: kernel density estimation

Classification
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Kernel Density Estimation (KDE)

Kernel density estimator (KDE):
1 & 1 T — x;
o ()

where K (-) is a kernel function and i > 0 is the bandwidth

e Kernel function: any function K (x) > 0 that satisfies

/K(x)dw =1, /xK(x)dx =0, / 22K (z)dx > 0

e Common kernel function:
o Gaussian Kernel: K(z) = —a*/2
o Epanechnikov kernel: K (x ) 43—\/5( - L;)Il{m <5}

ﬁ\
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Optimal bandwidth

Theorem 2.6

Under some regularity conditions, we have

R(f, fn) ~ ’f(/zQK(x)dIY/(f”(x))zdﬁ %/KZ(az)dx.

The optimal bandwidth is
.1 ) —2/5 ) 1/5 w2 —-1/5
B = m(/x K (x)de ) (/K (x)dz ) (/(f (2))* da)
With this choice of bandwidth,

R(f fu) = e

T p4l/s

Classification




Cross-validation

Cross-validation: estimate the risk under each bandwidth selection h

~

L(h) = / (Fla) — f())%dz = / P(e)de — 2 / Fla) f(x)da + / £2()de
=J(h)

e Estimating J(h):

Ty = [ Pade =23 Fy(x)
i=1

It can be shown that E[J(h)] = E[J(h)]
e Cross validation: select h that minimizes j(h)

~

e An efficient formula for approximatly computing J(h):

- l =1 ., X —X;
Ty == > K (Z5—) + —K(0)

where K*(z) = [ K(z — y)K(y)dy — 2K ()

Classification
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Theoretical guarantees for cross validation

Theorem 2.7 (Stone’s Theorem)

|
Suppose that f is bounded. Let fh be the KDE with bandwidth h, and let h
be the bandwidth chosen by cross-validation. Then
MISE( f~
_MBER) w
infy, MISE(f)

asn — Q.

e Stone's theorem provides theoretical justification for using cross-validation
to select bandwidth for KDE.
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Implications

Faster convergence rate: O(n~ /%) vs. O(n=2/%)
N—— ——

KDE histogram
Extension to higher dimension: consider estimating a density f in R?
e kernel function K: symmetric density (e.g., density of N'(0,;))

e KDE: for a symmetric, PSD bandwidth matrix H € R4*¢
. 1 <&
=2 det(H)"V2K(H ?(x — a;
Flo) = 3 S a1y K ()

e bandwidth selection: Silverman’s rule of thumb
( 4 )2/(d+4)

n(d+2)
where o2 is the variance of the i-th variable.

e suffers from curse of dimensionality (error exponential in d)

Classification
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Kernel Density Classifier

Bayes optimal classifier:

PX =z |Y =k PY =k)
Se P(X =z |Y=kK)PY =k)

P(Y=k|X=2x)=

e Construct a KDE fk(x) for the conditional density P(X =2 | Y = k)
using data {x; : y; = k} for each class k € {1,..., K},

e Estimate class priors P(y = k) with empirical frequency 7T, = ny/n

e Kernel density classifier: for any input x, return

arg max @(Y =k|X=2x)= Kﬂkf#
1shsK Zk’:l ﬂk’f]q’(l‘)
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Kernel Density Classifier

Bayes optimal classifier:

PX =z |Y =k PY =k)
Se P(X =z |Y=kK)PY =k)

P(Y=k|X=2x)=

Construct a KDE fk(x) for the conditional density P(X =z | Y = k)
using data {x; : y; = k} for each class k € {1,..., K},

Estimate class priors P(y = k) with empirical frequency T, = ny/n

e Kernel density classifier: for any input x, return

arg max @(Y =k|X=2x)= Kﬂkf#
1shsK Zk’:l Wk’fk’(x)

Issue: curse of dimensionality
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Naive Bayes Classifier

e The Naive Bayes model assumes that given a class Y = k, the features
X1,..., Xy are conditionally independent.

e The class-conditional density fr(z) =P(X =« | Y = k) is given by:
d
fe(x) = H fuj(xj) where z=(x1,...,24q)
j=1
where fi ;(X}) is the marginal density of X; conditional on Y =k

e Naive Bayes classifier: for any input x, return

arg max ]IAD(Y:]C | X =2) = %
1sksK Zk’:l Wk/fk/(x)

where fk(x) = szl J?kg (zj).

o The estimate fk7 for class-conditional marginal densities f; ; can be
computed using e.g., one-dimensional KDE or histogram
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Discussions

e Naive Bayes works well in high-dimensional spaces and with small
datasets, despite the independence assumption often being violated.

e Advantages:

o Simple and fast
o Avoids curse of dimensionality
o Robust to irrelevant features

e Disadvantages:

o Assumption of feature independence might be unrealistic

Classification
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Tree-based methods



Classification tree

South African heart disease data: "0”"="Yes, Disease”, "1"="No"
| 1
age < 50 ‘
>=50
[
age <30 famhist < 0.5
>=30 >—05
typea < 68 tobacco < 7.6 Idi<5

>= 68 >=7.6

adiposity >= 28

tobacco < 4.2
>=4.2

4 0 11 15
0 0 1 1
23% 37% 1 3% 5% 2% 4% 1%
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Classification tree

Setup: X =R?4, Y ={1,..., K}, training data (X1,Y1),...,(Xn,Ys)

Idea: grow a tree to recursively partition the feature space into a set of
rectangles, and do a simple majority vote in each rectangle

e Each node represents a rectangle in the feature space. The root node is
the feature space X = R?

Each node is either a leaf (no children) or a parent (has two children)

The left and right children comes from a partition of their parent node

e Suppose we have a collection of final partitioned regions associated with
the leaves at the bottom of the tree, denoted by Ry, ..., Ry

e For any input x, suppose that € R;, then this classification tree returns

~

f(@) =argmax »  1{Y; = k}

X; GR]‘

i.e., the predicted label is the majority in the region R;
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How to grow a classification tree?

In order to grow a classification tree, we need to ask:

1. How to split each parent node?

2. How large should we grow the tree?

For the first question: minimizing impurity

e Suppose that the parent node is associated with a rectangle R

o Choose a covariate X; and a split point ¢ that minimizes the impurity

e Let the rectangles associated with its left and right children be
Ri(j,t) ={X €eR:X; <t} and Ry(j,t)={X € R:X, >t}

For the second question: set some stopping criteria.

e For example, we may fix some number ng, and we might stop partition a
node when its associated rectangle has fewer than ng training data points.
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Impurity function

Let R be the node to be split into two regions. We choose

e min FL0-1) LT

Jot |R|
impurity function

V(R1(4,1)) + V(Ra(4,1)),

o Here y(R) measures the “variance” of the labels of data in R: we want

{Y;: X; € R} to have low variability
e For any given rectangle R, let

1
P = — Z I{Y; =k}, 1<k<K.
|R‘ X;eR
Two common choice of the function ~(-):
o Gini index: v(R) =Y, pr(1 — pr)
o Cross entropy: v(R) = — ), prlogpk

Classification
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Insights

e advantage: the tree structure provides great interpretability

o for example, it allows reasoning about the cause of diseases

e disadvantage: instability due to the use of greedy search:

o splitting process is greedy
o small changes in the training data can lead to significantly different
tree structures

e Solutions:

o Regularization: controlling tree growth parameters

o Pruning: removing branches that do not provide significant
predictive power

o Ensemble Methods: use bagging to create a random forest
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Bootstrap aggregating (Bagging)

e Training data Z, = {(X,,Y;),1 <i<n}
e Bootstrap sample Z(*0) = {(Xi(*b),Yi(*b)), 1 <i<n}: sample n data
points randomly from Z,, with replacement

o Apply the learning algorithm to the bootstrap sample for B times, and
produce outcomes f;

e Majority vote: fb288M8(z) = arg maxcy Zle 1{fp(z) = k}

MBI Bootstrap sample T} (x)
BN Bootstrap sample Ty (x)
The training data [l
L e o -
BN Bootstrap sample . Th(x) —

Classification Final Classifier 260



Insights

Trees generated in bagging are identically distributed (not independent!)
Bias of bagged tress is the same as the individual tree

Pro: Reduce the variance, so good for high-variance, low-bias procedures,
like trees.

Heuristics: Suppose we have B identically distributed random variables
with variance o2 and positive pairwise correlation p, then their average
has variance of 1
po? + I P2
Increasing B does not reduce the first term
— Random Forest!
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Random forests

e Key idea: use random dropout to decorrelate bootstrapped trees

When growing a tree on a bootstrapped sample, before each split of the
node, select m < d variables at random as candidates to split

Typical values for m is Vd.
Majority vote: fRF(z) = arg maxyey Zle 1{fola) =k}

randomized
N Bootstrap sample | Tr(x) —

randomized
M Bootstrap sample T; (z)

_

. randomized .

randomized
Bootstrap sample Ty (x)

Final Classifier
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How to remove bias: Boosting

o Setup: X =R?, Y = {1}
e Weak classifier: error rate only slightly better than random guess

o Key idea: sequentially apply weak classification algorithm to repeatedly
modified versions of the data to produce a sequence of weak classifiers
o assign unequal weights to training data points
— possible for trees
o sequentially find a committee of weak classifiers {fm M

m=1

o produce the final prediction through a weighted majority vote

o~ M ~
f(x) = sign(z [ ()

m=1
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AdaBoost

Initialization: set the weights w; = 1/n for 1 <i <n.
Form=1,...,M:

Compute the weighted misclassification error:

S w I{Y; # J/C\m(Xi)}'

(m) _
err'™) = =
Dic1 Wi
o Compute:
1 —err(m)
am = log (7err(m) )
e Update the weights by:

w; < w; + exp (ozm']l{Yi * fm(Xz)}), 1=1,2,...,

Output: f(z) = sign( XM, @ fin(2)).

Classification

Fit a weak classifier fm(x) using training data with weights wy, ...

7w71
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AdaBoost: insights

Key idea: in the weight update step
W; — W; - exp (am -U{Y; # fm(Xi)}), 1=1,2,...,n.
e For incorrectly classified data points, their weights get inflated by e*m

e Note that a,, > 0 should always hold

e This re-weighting encourages the next classifier to focus more on the
misclassified data points

Classification
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Discussion: three main approaches to classification



Three main approaches

Bayes optimal classifier: for any x € X, output
ff(x)=argmax PY =y | X = x)
yey
minimizes the Bayes risk R(f) =P(f(X) #Y)

Classification
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Three main approaches

Bayes optimal classifier: for any x € X, output

) =argmax PY =y | X =x)
yeY

minimizes the Bayes risk R(f) =P(f(X) #Y)

e Plug-in approach: model data distribution p, then estimate densities
PX =z |Y =y PY =y)

YyeyPX =z |Y =y)PY =y)

PY=y|X=2)=

Classification 2-76



Three main approaches

Bayes optimal classifier: for any x € X, output

() =argmax PY =y | X = x)
yey

minimizes the Bayes risk R(f) =P(f(X) #Y)
e Plug-in approach: model data distribution p, then estimate densities
P(X =z |Y =y)P(Y =
P(Y =y | X =) = X =2|Y=yPY =y
YyeyPX =z |Y =y)PY =vy)

Example: LDA, QDA, Kernel density classifier
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Three main approaches

Bayes optimal classifier: for any z € X, output

() =argmax PY =y | X =x)
yeY

minimizes the Bayes risk R(f) = P(f(X) #Y)
e Plug-in approach

e Regression: modeling and estimating each

re(z) =P(Y =k | X =x) for k=1,...

Classification
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Three main approaches

Bayes optimal classifier: for any x € X, output
) =argmax PY =y | X =x)
yey
minimizes the Bayes risk R(f) =P(f(X) #Y)

e Plug-in approach

e Regression: modeling and estimating each
rp(x) =P(Y =k| X =2) for k=1,...,K

Example: logistic regression

Classification
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Three main approaches

Bayes optimal classifier: for any x € X, output

) =argmax PY =y | X = x)
yeY

minimizes the Bayes risk R(f) = P(f(X) #Y)
e Plug-in approach
e Regression

e Empirical risk minimization: choose a set of classifiers F and find fe F
that minimizes the “empirical risk":

Ralf) = = S 1{A(X0) £ i)

Intuition: when n is large, R, (f) =~ R(f) by LLN
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Three main approaches

Bayes optimal classifier: for any x € X, output

ff(x)=argmax PY =y | X = x)
yeY

minimizes the Bayes risk R(f) =P(f(X) #Y)
e Plug-in approach

e Regression

e Empirical risk minimization

e Other approaches: SVM, tree-based methods...
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ERM: advantages

~ 1
fn= ar}g;en;m - ; 1{f(X;) #Yi} = R,(f)

e a straightforward method based on simple heuristics
— robustness!

e can be easily generalized to other loss ¢(-,) by considering
1 n
Ru(f) == Uf(X:),Y)
i=1

if the ultimate goal is to minimize R,(f) = E[¢(f(X),Y)]. For example,
in binary classification (i.e., Y = {0,1})

o Hinge loss ¢(f(x),y) = max{0,1 — yf(x)}
o Logistic loss £(f(z),y) = log(1 + exp(—yf(x)))

— Logistic regression can also be viewed as ERM!

Classification 2-77



ERM: disadvantages

Fn _argmmfZ]l{f i) # Yi} = Ru(f)

fer

o Not easy to compute (due to nonsmoothness of the indicator function)

e Solution: in binary classification (i.e., Y = {0,1}), consider using hinge
loss or logistic loss ¢(-)

and relax f : R? — R, and finally output sign(2(f(z) — 1))

e Here we will only focus on the standard ERM

Classification

2-78



ERM: error decomposition

fnfargmmlel{f ) # Yi} = Ru(f)

fer

e We want to control the excess rlsk

R(fa) = B(f*) = R(fx) — min R(f) +min R(f) — R(f*)

>0, statistical error >0, approximation error

e approximation error: becomes smaller when choosing larger F

— becomes 0 when f* € F

e statistical error: becomes smaller when n becomes larger, and when
choosing smaller F (why?)

o trade-off between fit and complexity
e In this course, we will focus on understanding statistical error with a given

F that includes f* (so that approximation error = 0)
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Excess risk via uniform deviations

f—argmmlel{f ) # Yi} = Ru(f)

fer

Theorem 2.8
The excess risk is upper bounded by

R(fn) — R(f*) < 2sup |Ra(f) — R(f)|

feF

Implications:

e For a given f, we know that R, (f) — R(f) at a rate O(1/+/n) by CLT
Vi(Bu(f) = B() 5 N(O.var(L{f(X) # Y })

e But what about the uniform convergence of sup;c » |Rn(f) — R(f)|?
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Concentration inequalities and uniform convergence



Why concentration inequalities?

Consider i.i.d. variables X7, ..., X,, with E[X;] = u and var(X;) = o2
e Central limit theorem (CLT):
1 n d
‘/ﬁ(ﬁ Z;Xi - u) 5 N(0,07)

tells us that the sample average concentrates around p, and the deviation
scales like o/+y/n as n — o0

e But this does not say anything useful when n is finite

e \We want some non-asymptotic statement like:
1 n
P(\nzx —u| ze(n,8) <6
1=

holds for any § > 0, where (n,d) > 0 is some quantity that depends on
the sample size n and the exceptional probability §
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A simple case with i.i.d. Gaussian

X, & N (u,0?), then we have

1 « 2
n n

Suppose that Xi,...,

Theorem 2.9
For G ~ N(0,1) and any t > 0, we have

42
(& t/2.

1 1\ 1,
- — = )| — <P(G>t) <
(i-@) 7z rezns

~+ | =
[N
3

As a result,

P(‘i;&' ZEDE \n\ﬁ (- 5oa)
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A simple case with i.i.d. Gaussian

Suppose that X1,..., X, P N (i, 0%), then we have
I 2
n n

Theorem 2.9
For G ~ N(0,1) and any t > 0, we have

42
(& t/2.

1 1\ 1,
- — = )| — <P(G>t) <
(i-@) 7z rezns

~+ | =
[N
3

As a result,
1 n nt2
P X n|2t) < e (- 5s)
n; ) ft 202

Question: how can we extend these to more general distributions?
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From Gaussian to sub-Gaussian

e Question: can we generalize these results to other random variables?

Idea: consider other random variables with similar tail probability

e From Theorem 3.2, we know that for G ~ N(0, 02),

PG| >t) <e /7" forallt >0

We may consider random variables satisfy this type of tail properties

— sub-Gaussian
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Sub-Gaussian properties

Let X be a random variable, then the following properties are equivalent:

1. The tails of X satisfy

P(|X|>t) <2exp (—t*/K7) forall t>0

. The moments of X satisfy

X ||z» = E[XPP)? < Ko/p forall p>1

3. The moment generating function (MGF) of X? satisfies
E[exp(A’X?)] < exp(K3A?) for all X such that [A| < 1/K;
4. The MGF of X? is bounded at some point, namely

E[exp (X?/K3)] < 2.

5. f EX = 0, then the MGF of X satisfies

where K7, ..

Classification

E[exp(AX)] < exp(KZX\?) for all A € R.
., K5 > 0 may differ by at most a multiplicative constant factor
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Sub-Gaussian distributions: definition

e If X satisfies one of properties 1-4, it is a sub-Gaussian random variable.

o The sub-Gaussian norm of X, denoted || X||y,, is defined to be the
smallest K4 in property 4. In other words, we define

| X, = inf {t >0:Eexp (XQ/tQ) < 2} .
— can also be defined using K1, Ky or K3
e Properties: there exists some absolute constants ¢, C' > 0 such that

o P(IX|>1t) < 2exp(—ct?/|X]3,)

o | X|lzr < ClI Xy /P

o Eexp (X2/||X||fb2) <2

o if E[X] =0, then Eexp(AX) < exp(CA?[|X||2,)
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Sub-Gaussian distributions: examples

e Gaussian: if X ~ N(0,0?), then X is sub-Gaussian with
[ X1y, < Co

for some universal constant C = 2,/2/3.

e Bounded: any bounded random variable X is sub-Gaussian with
[ Xy, < ClIX|loo

for some universal constant C = 1/+/log 2.

Sub-Gaussian norm can be viewed as a characterization of “magnitude” for
light tail distributions.
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Centering and independent sums

Theorem 2.10
o If X is sub-Gaussian, then X — E[X] is sub-Gaussian with
1X ~E[X]llg, < CIX ]y
where C is an absolute constant.

e let X1,...,XxN be independent, mean zero, sub-Gaussian random
variables. Then the sum Sy = va:l X, is also sub-Gaussian, and its
sub-Gaussian norm satisfies

N
2 2
ISn17, < CY X7,
i=1
where C is an absolute constant.

Analog:
o If Xy,...,X, areiid. N(0,02), then Sy ~ N(0, No?)
e If Xy,..., X, are independent with || X;||,, < o, then ||Sx |y, < VNo
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Hoeffding’s inequality

Theorem 2.11 (Hoeffding's Inequality)

Let X4,..., Xy be independent, mean-zero, sub-Gaussian random variables.
Then, for any t > 0, we have:

P(iX» >t><2exp< ot >
i| 2 = =N o5 |
Yim Xl

i=1
where c is an absolute constant.
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Implications

o General Hoeffding: under the setup of Theorem 3.4, consider any vector
a=(ay,...,a,) € R™, we have

ct?

N
>0
i=1

e Example: suppose that X; ~ Bernoulli(p;) for 1 < i < n, then

2
IP’( 215) SZeXp(C;[),

A sharper result for binomial concentration: Chernoff’s inequality (HW)

where K = max || X;||y,-

N

Z(Xi —pi)

i=1
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Back to ERM: finite F

I —arjgen;mgzﬂ{f i) # Yi} = Ru(f)
Theorem 2.12

Suppose that F is a finite set. Then with probability exceeding 1 — 9, the
excess risk of ERM is upper bounded by

R(,) - R() < 0y 128UF1/0),

n

for some universal constant C > 0.

e Key proof idea: union bound argument
o What if F is not finite (e.g., the set of linear classifiers)?
— use VC dimension!
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Back to ERM: finite F

f —argmlnEZIL{f ) # Y} = R,(f)

fer

Theorem 2.12

Suppose that F is a finite set. Then with probability exceeding 1 — 9, the
excess risk of ERM is upper bounded by

log(171/6)

R(f.) - R(f*) < C

for some universal constant C > 0.

e Key proof idea: union bound argument
o What if F is not finite (e.g., the set of linear classifiers)?

— use VC dimension!
e But before going into that, let's first warm up with something simpler
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/5 norm of a sub-Gaussian random vector

e Consider a random vector x = (X1,...,Xy), where X1,..., X, are
independent random variables with E[X;] = 0 and || X;||y, <o

e Can we establish a non-asymptotic upper bound for ||x||2?
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/5 norm of a sub-Gaussian random vector

e Consider a random vector x = (X1,...,Xy), where X1,..., X, are
independent random variables with E[X;] = 0 and || X;||y, <o

e Can we establish a non-asymptotic upper bound for ||x||2?

e Solution 1: entrywise concentration and union bound

P(|zl2 < Cov/dlog(d/s)) >1—6

for some universal constant C > 0
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/5 norm of a sub-Gaussian random vector

e Consider a random vector x = (X1,...,Xy), where X1,..., X, are
independent random variables with E[X;] = 0 and || X;||y, <o

e Can we establish a non-asymptotic upper bound for ||x||2?

e Solution 1: entrywise concentration and union bound

P(|zl2 < Cov/dlog(d/s)) >1—6

for some universal constant C' > 0
e Solution 2: uniform concentration using

|zl = sup a'z
acSi-1
where S?~1 := {x € R?: ||z||y = 1} is the unit sphere in R?

— could this provide a better concentration bound?
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Operator norm of sub-Gaussian matrix

o Consider a random matrix X = (X, j)i<i j<q With independent entries
that satisfies E[X; ;] = 0 and || X} ||y, < 0

e Can we establish a non-asymptotic upper bound for || X ||?

e Operator norm:

|X|= sup |Xala= sup a'Xb
aceSd-1 a,beSd—1

where S9! := {z € R?: ||z|2 = 1} is the unit sphere in R?
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A framework for uniform concentration

Goal: upper bounding sup,cga-1 a'z
Step 1: pointwise concentration. For any fixed a € S%~1, we can use
Hoeffding's inequality to get

P(la"z| < Cov/log(1/6)) >1 -4

for some universal constant C' > 0

Difficulty: the unit sphere S¢~! is not a finite set, union bound argument
does not work

Idea: find a finite subset N of S%1 that is fine enough, such that

?
sup a'x < sup a' x < Cov/log(IN|/6)
acSd-1 aeN

with probability at least 1 — §
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Epsilon net

o Let (T,d) be a metric space. Consider a subset KX C T and let € > 0.
— e.g., consider T = R?, d(-,-) is Euclidean distance, K = Sd-1
e A subset N C K is called an e-net of K if every point in K is within

distance ¢ of some point of IV, i.e.,

Vee K, JzgeN st d(z,xg)<e

Theorem 2.13
Let N. be an e-net of S*~ 1. If¢ < 1, then for any x € R4,

1
sup a'w < sup a'x < sup aTa:,
acN, acSd—1 — € aeN.

and if e < 1/2, then for any X € R%*4,

sup a' Xb< sup a'Xb< sup a'Xb.
a,beN. a,becSi-1 1- € a,beN.
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The covering number

Covering number: the smallest possible cardinality of an e-net of K,
denoted by V(K ¢)

Theorem 2.14

The covering number of S*~' is upper bounded by

d
NS4 1Le) < (i + 1)

Classification



/5 norm of sub-Gaussian random vector

e Goal: upper bounding sup,cgi-1 a'x

e Step 1: pointwise concentration. For any fixed a € S%~1, we can use
Hoeffding's inequality to get

P(la"z| < Cioy/log(1/6)) > 16

for some universal constant C; > 0
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/5 norm of sub-Gaussian random vector

e Goal: upper bounding sup,cgi-1a'x

e Step 1: pointwise concentration. For any fixed a € S%~1, we can use
Hoeffding's inequality to get

P(la"z| < Cioy/log(1/6)) > 16
for some universal constant C; > 0

e Step 2: uniform concentration over an 1/2-net. Let /\/1/2 be the
smallest 1/2-net of S¢~!. By union bound argument and Theorem 3.7,

P( sup |a'z| < Coov/dlog(1/8)) > 14

a€N1/2
for some universal constant Cy > 0
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/5 norm of sub-Gaussian random vector

Classification

Goal: upper bounding sup,cga-1 a'x

Step 1: pointwise concentration. For any fixed a € S%~!, we can use
Hoeffding's inequality to get

P(la"z| < Cioy/log(1/6)) > 16
for some universal constant C; > 0

Step 2: uniform concentration over an 1/2-net. Let /\/1/2 be the
smallest 1/2-net of S¢~!. By union bound argument and Theorem 3.7,

P( sup |a'z| < Coov/dlog(1/8)) > 14

a€N1/2
for some universal constant Cy > 0

Step 3: approximation. By Theorem 3.6,

P(|l]ls < Cso+/dlog(1/3)) > 1— 6

for some universal constant C3 > 0
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Operator norm of sub-Gaussian random matrix

e Goal: upper bounding sup, pcsi-1 a' Xb

e Step 1: pointwise concentration. For any fixed a,b € S, we can
use Hoeffding's inequality to get

P(la" Xb| < Cioy/log(1/5)) > 1 -6

for some universal constant C; > 0
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Operator norm of sub-Gaussian random matrix

Classification

Goal: upper bounding sup, pcsi-1 @' Xb

Step 1: pointwise concentration. For any fixed a,b € S, we can
use Hoeffding's inequality to get

P(la" Xb| < Cioy/log(1/5)) > 1 -6
for some universal constant C; > 0

Step 2: uniform concentration over an 1/4-net. Let N1/4 be the
smallest 1/4-net of S¢~!. By union bound argument and Theorem 3.7,
P( sup |a'Xb| < Cooy/dlog(1/8)) >1—6
a,bEN1/4

for some universal constant Cy > 0



Operator norm of sub-Gaussian random matrix

e Goal: upper bounding sup, pcsi-1 a' Xb

e Step 1: pointwise concentration. For any fixed a,b € S, we can
use Hoeffding's inequality to get

P(la" Xb| < Cioy/log(1/5)) > 1 -6
for some universal constant C; > 0

e Step 2: uniform concentration over an 1/4-net. Let N1/4 be the
smallest 1/4-net of S¢~!. By union bound argument and Theorem 3.7,

P( sup |a'Xb| < Cooy/dlog(1/8)) >1—6

a,bEN1/4
for some universal constant Cy > 0

e Step 3: approximation. By Theorem 3.6,

P(||[ X2 < 2C20+/dlog(1/6)) > 1 -6

for some universal constant C3 > 0
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VC dimension

e Let F be a class of binary functions on the domain X.

e Shattering: a set of points {z1,...,z;} C X is shattered by F if for
every possible labeling {0, 1}*, there exists a function f € F that realizes
the labeling.

e The VC dimension of F, denoted VC(F), is the largest integer k such
that there exists a set of k£ points in X’ that can be shattered by F.

e Examples:

o When X = R?, F = linear classifiers, we have vc(F) = 3
o In general, when X = R?, F = linear classifiers, then vc(F) =d + 1
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Bounding excess risk via VC dimension

Fu _argmmfZ]l{f ) # Yit = Ru(f)

fer

Theorem 2.15

Suppose that F is a class of Boolean function with vc(F) < oo. Then with
probability exceeding 1 — 6,

R(E) — R(f*) < ¢/ <) 108(1/9)

n

for some universal constant C > 0.

Implications:

e For F = linear classifiers in R, the excess risk is O(y/d/n).
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