
STAT 615: Statistical Learning

Classification

Yuling Yan

University of Wisconsin–Madison, Spring 2025



Classification problem

• Classification: assign a label (or category, class) to an observation based
on its features

• X : input space (e.g. Rd); Y: output space (e.g. {1, 2, . . . , K})

• x ∈ X : feature vector, input, data point...

• y ∈ Y: label, category, class...

• Classifier: a mapping f : X → Y

• Goal: construct a classifier f that accurately predicts the label y given the
features x

Classification 2-2



MNIST dataset

• Input: 28x28 gray scale (1 channel) images, i.e., X = R28×28 or R784

• Output: digits 0 through 9 (i.e., Y = {0, 1, . . . , 9})

Classification 2-3



CIFAR datasets

• Input: 32× 32 RGB color (3 channels) images, i.e., X = R32×32×3 or
R3072

• Output: 10 classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses,
ships, and trucks) or 100 classes

Classification 2-4



ImageNet dataset

• Input: varies, often high-resolution (often 224× 224× 3)

• Output: 1000 different categories

Classification 2-5



Mathematical set-up

• Modeling assumption: the data (input-output pairs) come from an
underlying data distribution ρ over X × Y

• Training data: (x1, y1), . . . , (xn, yn) i.i.d.∼ ρ

• Error metric: for any given classifier f , its risk, defined as the average
(expected) classification error on a new data is

R(f) := P(X,Y )∼ρ(f(X) ̸= Y )

• Supervised learning: build a classifier f based on training data, that
makes the average classification error as small as possible

Classification 2-6



Questions

• Does there exists a “best” classifier?
— this lecture

• Can we construct this “best” classifier with the information of ρ?
— this lecture

• What can we do when we only have a finite number of training data?
— first half of the semester

Classification 2-7



Bayes optimal classifier: binary case

• Consider the binary case: Y = {0, 1}

• Define the Bayes classifier: for any x ∈ X ,

f⋆(x) :=
{

1, if P(Y = 1 | X = x) ≥ P(Y = 0 | X = x),
0, otherwise.

Theorem 2.1 (Bayes optimal classifier: binary case)
The Bayes classifier f⋆ minimizes the misclassification error, i.e.,

f⋆ ∈ arg min
f :X →Y

P(X,Y )∼ρ(f(X) ̸= Y ).

Classification 2-8



Proof of Theorem 2.1
We need to show that, for any classifier f : X → Y,

R(f) = P(f(X) ̸= Y ) ≥ P(f⋆(X) ̸= Y ) = R(f⋆)

By tower property,

P(f(X) ̸= Y ) = E
[
1f(X )̸=Y

]
= EX

[
E
[
1f(X )̸=Y | X

]]
(tower property)

= EX [P (f(X) ̸= Y | X)]
≥ EX [P (f⋆(X) ̸= Y | X)] (why?)
= EX

[
E
[
1f⋆(X )̸=Y | X

]]
= E

[
1f⋆(X )̸=Y

]
(tower property)

= P(f⋆(X) ̸= Y ).

It suffices to check

P (f(X) ̸= Y | X) ≥ P (f⋆(X) ̸= Y | X) .

Classification 2-9



Proof of Theorem 2.1 (cont.)

Observe that

P(f⋆(X) ̸= Y | X) =
{
P(Y = 0 | X) if P(Y = 1 | X) ≥ P(Y = 0 | X)
P(Y = 1 | X) if P(Y = 1 | X) ≥ P(Y = 0 | X)

= min
{
P(Y = 1 | X),P(Y = 0 | X)

}
and

P(f(X) ̸= Y | X) =
{
P(Y = 0 | X) if f(X) = 1
P(Y = 1 | X) if f(X) = 0

≥ min
{
P(Y = 1 | X),P(Y = 0 | X)

}
.

Therefore
P(f⋆(X) ̸= Y | X) ≥ P(f(X) ̸= Y | X).

Classification 2-10



A few remarks

Bayes optimal classifier

f⋆(x) :=
{

1, if P(Y = 1 | X = x) ≥ P(Y = 0 | X = x),
0, otherwise.

• Depends on the true underlying data distribution ρ

• The optimal classifier might not be unique

• When X is discrete, it is equivalent to

f⋆(x) :=
{

1, if P(X = x, Y = 1) ≥ P(X = x, Y = 0),
0, otherwise.

Classification 2-11



Bayes risk: binary case

• Bayes risk:
R⋆ := P(X,Y )∼ρ(f⋆(X) ̸= Y )

• The Bayes risk serves as a lower bound for the classification error that any
practical classifier can achieve:

R⋆ = min
f :X →Y

P(X,Y )∼ρ(f(X) ̸= Y ).

• It represents the inherent uncertainty in the classification problem due to
overlapping distributions of the classes.

• Excess risk: R(f)−R⋆

Classification 2-12



Bayes optimal classifier: multiclass setting

• Consider the multiclass case: Y = {1, . . . , K}

• Define the Bayes classifier: for any x ∈ X ,

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

Theorem 2.2 (Bayes optimal classifier: multiclass case)
The Bayes classifier f⋆ minimizes the misclassification error, i.e.,

f⋆ ∈ arg min
f :X →Y

P(X,Y )∼ρ(f(X) ̸= Y ).

Proof: similar to Theorem 2.1, it suffices to check for any classifier f

P (f(X) ̸= Y | X) ≥ P (f⋆(X) ̸= Y | X) .

Classification 2-13



Bayes optimal classifier: multiclass setting

• Consider the multiclass case: Y = {1, . . . , K}

• Define the Bayes classifier: for any x ∈ X ,

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

Theorem 2.2 (Bayes optimal classifier: multiclass case)
The Bayes classifier f⋆ minimizes the misclassification error, i.e.,

f⋆ ∈ arg min
f :X →Y

P(X,Y )∼ρ(f(X) ̸= Y ).

Proof: similar to Theorem 2.1, it suffices to check for any classifier f

P (f(X) ̸= Y | X) ≥ P (f⋆(X) ̸= Y | X) .

Classification 2-13



More general loss function?

• Consider more general loss function ℓ : Y × Y → R

• Define the risk for a classifier f : X → Y as

Rℓ(f) := E(X,Y )∼ρ[ℓ(f(X), Y )]

• Example: with 0-1 loss ℓ(y, y′) = 1{y ̸= y′}, we recover the average
classification error

R(f) = P(X,Y )∼ρ(f(X) ̸= Y )

• Goal: find f that minimizes the risk Rℓ(f) (the Bayes classifier might not
be optimal...)

Question: Can you think of settings where other types of loss functions are
more appropriate than the 0-1 loss?

Classification 2-14



Example: traffic signs

• Y = {stop sign, 50 mph, 40 mph}.

• Predicting 50 mph when it is actually a stop sign is worse than predicting
40 mph when it is actually 50mph.

• 0-1 loss is not suitable here...

We will discuss classification with general loss later if time permits

Classification 2-15



Example: traffic signs

• Y = {stop sign, 50 mph, 40 mph}.

• Predicting 50 mph when it is actually a stop sign is worse than predicting
40 mph when it is actually 50mph.

• 0-1 loss is not suitable here...

We will discuss classification with general loss later if time permits

Classification 2-15



Supervised learning

• Go back to 0-1 loss

• In practice, we don’t know ρ. It is in general impossible to compute the
Bayes classifier f⋆

• Goal: build a classifier f : X → Y based on training data
(x1, y1), . . . , (xn, yn) i.i.d.∼ ρ

• Hope: achieve small excess risk R(f)−R⋆

• High-level framework:
◦ Make some modeling assumptions on ρ
◦ Design a good classifier f under this setup
◦ For example, a good classifier may satisfy

R(f)−R⋆ ≤ h(n)

where h(n) is a function of the sample size n describing the rate of
convergence, e.g., h(n) = O(1/n).

Classification 2-16



Linear Methods for Classification



Linear classifiers

• Linear classifiers: decision boundaries are linear hyperplanes
◦ Hyperplane Hβ,β0 = {x ∈ Rd : ⟨β,x⟩+ β0 = 0}
◦ Half planes cut by Hβ,β0 :

H+
β,β0

= {x ∈ Rd : ⟨β,x⟩+ β0 ≥ 0},

H−
β,β0

= {x ∈ Rd : ⟨β,x⟩+ β0 < 0}.

◦ Example: in the binary case, the linear classifier has the form

f(x) = 1{x ∈ H+
β,β0
}

• Three approaches to learn a linear classifier from the data:
◦ Linear discriminant analysis (LDA)
◦ Logistic regression
◦ Perceptrons and Support vector machines (SVMs)

Classification 2-18



Linear discriminant analysis (LDA)

• Model set-up: X = Rd, Y = {1, . . . , K}. For k = 1, . . . , K,

P(Y = k) = ωk, X | Y = k ∼ N (µk,Σ)

where ωk ≥ 0,
∑K
k=1 ωk = 1, µk ∈ Rd, Σ ∈ Sd+

• The Bayes classifier under this setup: for any x, compute

δk(x) := x⊤Σ−1µk −
1
2µ

⊤
k Σ

−1µk + log ωk︸ ︷︷ ︸
∝ log P(Y=k |X=x)+constant

.

Let f⋆(x) = arg max1≤k≤K δk(x).

• Issue: model parameters are unknown...

Classification 2-19



Plug-in approach

• Plug-in approach: replace the unknown parameters with reliable estimates

• Suppose we have i.i.d. data (x1, y1), . . . , (xn, yn) i.i.d.∼ ρ

• For each 1 ≤ k ≤ K, let nk =
∑n
i=1 1{yi = k} and

µ̂k = 1
nk

∑
i:yi=k

xi, ω̂k = nk
n

• Estimate the covariance matrix

Σ̂ = 1
N −K

K∑
k=1

∑
i:yi=k

(
xi − µ̂k

)(
xi − µ̂k

)⊤

• Replace µk, ωk, Σ with µ̂k, ω̂k, Σ̂

δ̂k(x) := x⊤Σ̂−1µ̂k −
1
2 µ̂

⊤
k Σ̂

−1µ̂k + log ω̂k︸ ︷︷ ︸
linear in x

.

Classification 2-20



Generalization

• Consider a more general set-up: for k = 1, . . . , K, assume

P(Y = k) = ωk, X | Y = k ∼ N (µk,Σk)

where ωk ≥ 0,
∑K
k=1 ωk = 1, µk ∈ Rd, Σk ∈ Sd+

• This setup will lead to the so-called quadratic discriminant analysis (QDA)

• Homework: derive QDA
◦ What is the Bayes classifier under this setup?
◦ How to derive a practical (data-driven) classifier?
◦ Is this still a linear classifier?

Classification 2-21



Logistic regression

• Model set-up: X = Rd, Y = {0, 1, . . . , K}. Let

P(Y = k | x) = exp(β⊤
k x + β0,k)

1 +
∑K
k′=1 exp(β⊤

k′x + β0,k′)
, (1 ≤ k ≤ K),

P(Y = 0 | x) = 1
1 +

∑K
k′=1 exp(β⊤

k′x + β0,k)
,

where the parameters βk ∈ Rd, β0,k ∈ R for k = 1, . . . , K

• Model set-up: X = Rd × {1}, Y = {0, 1, . . . , K}. Let

P(Y = k | x) = exp(β⊤
k x)

1 +
∑K
k′=1 exp(β⊤

k′x)
, (k = 1, . . . , K),

P(Y = 0 | x) = 1
1 +

∑K
k′=1 exp(β⊤

k′x)
,

where the parameters βk ∈ Rd+1 for k = 1, . . . , K

• Bayes classifier:

f(x) =
{

argmax1≤k≤Kβ⊤
k x, if max1≤k≤K β⊤

k x > 0,

0, otherwise.

• Estimate βk’s: maximum likelihood estimation (MLE)

Classification 2-22



Logistic regression

• Model set-up: X = Rd, Y = {0, 1, . . . , K}. Let

P(Y = k | x) = exp(β⊤
k x + β0,k)

1 +
∑K
k′=1 exp(β⊤

k′x + β0,k′)
, (1 ≤ k ≤ K),

P(Y = 0 | x) = 1
1 +

∑K
k′=1 exp(β⊤

k′x + β0,k)
,

where the parameters βk ∈ Rd, β0,k ∈ R for k = 1, . . . , K

• Model set-up: X = Rd × {1}, Y = {0, 1, . . . , K}. Let

P(Y = k | x) = exp(β⊤
k x)

1 +
∑K
k′=1 exp(β⊤

k′x)
, (k = 1, . . . , K),

P(Y = 0 | x) = 1
1 +

∑K
k′=1 exp(β⊤

k′x)
,

where the parameters βk ∈ Rd+1 for k = 1, . . . , K

• Bayes classifier:

f(x) =
{

argmax1≤k≤Kβ⊤
k x, if max1≤k≤K β⊤

k x > 0,

0, otherwise.

• Estimate βk’s: maximum likelihood estimation (MLE)

Classification 2-22



Maximum likelihood estimation

• Suppose we have i.i.d. data (x1, y1), . . . , (xn, yn)

• The negative log-likelihood function

ℓ(β) = − 1
n

K∑
k=1

∑
i:yi=k

x⊤
i βk + 1

n

n∑
i=1

log
[
1 +

K∑
k′=1

exp(x⊤
i βk′)

]
• Maximum likelihood estimation (MLE)

β̂ := arg min
β

ℓ(β)

• Convex optimization: solve by e.g., gradient descent

βt+1 = βt − η∇ℓ(βt) (t = 0, 1, . . .)

Classification 2-23



A brief introduction to gradient descent

Gradient descent (GD) for solving minβ∈Rd L(β):

βt+1 = βt − η∇L(βt) (t = 0, 1, . . .)

When η is properly small, GD satisfy the following properties:

• For smooth function L, GD is a descent algorithm: L(βt+1) ≤ L(βt)

• For convex + smooth function L, GD satisfies

L(βt)− L(β⋆) ≤ O

(
∥β0 − β⋆∥2

2
t

)
(t = 0, 1, . . .)

for any minimizer β⋆

• For strongly convex + smooth function L, GD satisfies
∥βt+1 − β⋆∥2 ≤ (1− κ)t∥β0 − β⋆∥2 (t = 0, 1, . . .)

for some κ ∈ (0, 1), where β⋆ is the unique minimizer

Classification 2-24



Stochastic gradient descent

Consider the following empirical risk minimization problem

min
β∈Rd

L(β) := 1
n

n∑
i=1

g(β;xi),

where x1, . . . ,xn are training data points.

• Stochastic gradient descent: for t = 0, 1, . . . ,

βt+1 = βt − η∇g(βt;xit) where xit
ind.∼ Unif{x1, . . . ,xn}

• Gradient descent: for t = 0, 1, . . . ,

βt+1 = βt − η∇L(βt) = βt − η
1
n

n∑
i=1
∇g(β;xi)

• Advantage of SGD: much faster updates, especially for large datasets,
but still enjoys nice properties (sometimes even better than GD!)

Classification 2-25



Gradient descent methods

Example: GD / SGD for logistic regresion

Take-away: (stochastic) gradient descent is the default method for
solving unconstrained optimization problem

— simple and effective!

Recommended reading materials: Lecture 1 and 10 of the course

Large-Scale Optimization for Data Science

by Prof. Yuxin Chen (UPenn); Lecture on GD and SGD

Classification 2-26

https://yuxinchen2020.github.io/large_scale_optimization/lectures/grad_descent_unconstrained.pdf
https://yuxinchen2020.github.io/large_scale_optimization/lectures/stochastic_gradient.pdf


Perceptrons and SVMs



Linearly separable data

• Consider binary classification: X = Rd and Y = {1,−1}

• Training data: (x1, y1), . . . , (xn, yn)

• Linearly separable data: ∃ a separating hyperplane Hβ,β0 s.t.
yi · (x⊤

i β + β0) > 0 (i = 1, . . . , n)

• by merging β0 into β and adding 1 to xi’s, this assumption
becomes: ∃βsep ∈ Rd+1

yi · x⊤
i βsep > 0 (i = 1, . . . , n)

• Goal: search a separating hyperplane indexed by β̂

yi · x⊤
i β̂ > 0 (i = 1, . . . , n)

(note that βsep is not known a priori)

Classification 2-28



Linearly separable data

• Consider binary classification: X = Rd and Y = {1,−1}

• Training data: (x1, y1), . . . , (xn, yn)

• Linearly separable data: ∃ a separating hyperplane Hβ,β0 s.t.
yi · (x⊤

i β + β0) > 0 (i = 1, . . . , n)

• by merging β0 into β and adding 1 to xi’s, this assumption
becomes: ∃βsep ∈ Rd+1

yi · x⊤
i βsep > 0 (i = 1, . . . , n)

• Goal: search a separating hyperplane indexed by β̂

yi · x⊤
i β̂ > 0 (i = 1, . . . , n)

(note that βsep is not known a priori)

Classification 2-28



Linearly separable data

• Consider binary classification: X = Rd and Y = {1,−1}

• Training data: (x1, y1), . . . , (xn, yn)

• Linearly separable data: ∃ a separating hyperplane Hβ,β0 s.t.
yi · (x⊤

i β + β0) > 0 (i = 1, . . . , n)

• by merging β0 into β and adding 1 to xi’s, this assumption
becomes: ∃βsep ∈ Rd+1

yi · x⊤
i βsep > 0 (i = 1, . . . , n)

• Goal: search a separating hyperplane indexed by β̂

yi · x⊤
i β̂ > 0 (i = 1, . . . , n)

(note that βsep is not known a priori)

Classification 2-28



Perceptron Learning Algorithm

• For every β ∈ Rd+1, define the set Mβ := {i : yi · x⊤
i β ≤ 0}︸ ︷︷ ︸

misclassified points• Target: minimize the perceptron loss

σ(β) := −
∑
i∈Mβ

yi · x⊤
i β ∝

∑
i∈Mβ

dist(xi,Hβ)

where Hβ = {x : x⊤β = 0}

• Algorithm: initialize with β0 ∈ Rd+1, for t = 0, 1, . . . , update

βt+1 = βt + ηyixi, for a random i ∈Mβt

where η > 0 is the step size; in fact, we can take η = 1 here...

• Interpretation: SGD with step size 1 (kind of...)

Classification 2-29



Perceptron Learning Algorithm

• For every β ∈ Rd+1, define the set Mβ := {i : yi · x⊤
i β ≤ 0}︸ ︷︷ ︸

misclassified points• Target: minimize the perceptron loss

σ(β) := −
∑
i∈Mβ

yi · x⊤
i β ∝

∑
i∈Mβ

dist(xi,Hβ)

where Hβ = {x : x⊤β = 0}

• Algorithm: initialize with β0 ∈ Rd+1, for t = 0, 1, . . . , update

βt+1 = βt + yixi, for a random i ∈Mβt

• Interpretation: SGD with step size 1 (kind of...)

Classification 2-29



Convergence theory

Theorem 2.3
When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:

• solutions not unique: might converge to an unstable hyperplane
— resort to “optimal separating hyperplane”

• only works linearly separable data. If the classes cannot be
separated by a hyperplane, the algorithm will not converge
• the “finite” number of steps can be very large

Classification 2-30



Convergence theory

Theorem 2.3
When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:
• solutions not unique: might converge to an unstable hyperplane

— resort to “optimal separating hyperplane”

• only works linearly separable data. If the classes cannot be
separated by a hyperplane, the algorithm will not converge
• the “finite” number of steps can be very large

Classification 2-30



Convergence theory

Theorem 2.3
When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:
• solutions not unique: might converge to an unstable hyperplane

— resort to “optimal separating hyperplane”

• only works linearly separable data. If the classes cannot be
separated by a hyperplane, the algorithm will not converge
• the “finite” number of steps can be very large

Classification 2-30



Convergence theory

Theorem 2.3
When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:
• solutions not unique: might converge to an unstable hyperplane

— resort to “optimal separating hyperplane”
• only works linearly separable data. If the classes cannot be

separated by a hyperplane, the algorithm will not converge

• the “finite” number of steps can be very large

Classification 2-30



Convergence theory

Theorem 2.3
When the data is linearly separable, the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps.

Limitations:
• solutions not unique: might converge to an unstable hyperplane

— resort to “optimal separating hyperplane”
• only works linearly separable data. If the classes cannot be

separated by a hyperplane, the algorithm will not converge
• the “finite” number of steps can be very large

Classification 2-30



Optimal separating hyperplane

From now on, we “unmerge” β0 from β, as they play different roles.
Consider the optimization problem

max
∥β∥2=1,β0,M

M s.t. yi(x⊤
i β + β0) ≥M (i = 1, . . . , n)

Implications:

• the distance between x and the hyperplane Hβ,β0 is

• offers a unique solution that maximizes the margin M

• Margin: the distance between Hβ,β0 and the closest data points︸ ︷︷ ︸
support vectors

from
each class

• Intuition: a large margin on the training data will lead to good separation
on the test data.

Classification 2-31



Optimal separating hyperplane
From now on, we “unmerge” β0 from β, as they play different roles.
Consider the optimization problem

max
∥β∥2=1,β0,M

M s.t. yi(x⊤
i β + β0) ≥M (i = 1, . . . , n)

Implications:

• the distance between x and the hyperplane Hβ,β0 is

dist(x,Hβ,β0) = |β
⊤x + β0|
∥β∥2

if ∥β∥2=1==== |β⊤x + β0|

• offers a unique solution that maximizes the margin M

• Margin: the distance between Hβ,β0 and the closest data points︸ ︷︷ ︸
support vectors

from
each class

• Intuition: a large margin on the training data will lead to good separation
on the test data.

Classification 2-31



Optimal separating hyperplane

From now on, we “unmerge” β0 from β, as they play different roles.
Consider the optimization problem

max
∥β∥2=1,β0,M

M s.t. yi(x⊤
i β + β0) ≥M (i = 1, . . . , n)

Implications:

• the distance between x and the hyperplane Hβ,β0 is |β⊤x + β0|

• offers a unique solution that maximizes the margin M

• Margin: the distance between Hβ,β0 and the closest data points︸ ︷︷ ︸
support vectors

from
each class

• Intuition: a large margin on the training data will lead to good separation
on the test data.

Classification 2-31



Optimal separating hyperplane

From now on, we “unmerge” β0 from β, as they play different roles.
Consider the optimization problem

max
∥β∥2=1,β0,M

M s.t. yi(x⊤
i β + β0) ≥M (i = 1, . . . , n)

Implications:

• the distance between x and the hyperplane Hβ,β0 is |β⊤x + β0|

• offers a unique solution that maximizes the margin M

• Margin: the distance between Hβ,β0 and the closest data points︸ ︷︷ ︸
support vectors

from
each class

• Intuition: a large margin on the training data will lead to good separation
on the test data.

Classification 2-31



Reformulation as convex optimization

• Original problem:

max
∥β∥2=1,β0,M

M s.t. yi(x⊤
i β + β0) ≥M (i = 1, . . . , n)

• Issue: this is not a convex optimization problem...

• Reformulation:

min
β,β0

∥β∥2
2 s.t. yi(x⊤

i β + β0) ≥ 1 (i = 1, . . . , n)

this is a convex optimization problem

• This is known as the support vector machine (SVM)

Classification 2-32



Reformulation as convex optimization

• Original problem:

max
∥β∥2=1,β0,M

M s.t. yi(x⊤
i β + β0) ≥M (i = 1, . . . , n)

• Issue: this is not a convex optimization problem...

• Reformulation:

min
β,β0

∥β∥2
2 s.t. yi(x⊤

i β + β0) ≥ 1 (i = 1, . . . , n)

this is a convex optimization problem

• This is known as the support vector machine (SVM)

Classification 2-32



Reformulation as convex optimization

• Original problem:

max
∥β∥2=1,β0,M

M s.t. yi(x⊤
i β + β0) ≥M (i = 1, . . . , n)

• Issue: this is not a convex optimization problem...

• Reformulation:

min
β,β0

∥β∥2
2 s.t. yi(x⊤

i β + β0) ≥ 1 (i = 1, . . . , n)

this is a convex optimization problem

• This is known as the support vector machine (SVM)

Classification 2-32



SVMs for separable data

min
β,β0

1
2∥β∥

2
2 s.t. yi(x⊤

i β + β0) ≥ 1 (i = 1, . . . , n)

• SVM is a powerful method for binary classification

• finds a linear classifier with decision boundary {x : x⊤β̂ + β̂0 = 0} to
separate two classes with the maximum margin

• This is only feasible for linearly separated data
— can be generalized to accommodate non-separable data

• What can we say about SVM?
— resort to duality theory!

Classification 2-33



Convex optimization and duality theory



Primal problem and Lagrangian function

• Consider a convex optimization problem:

min
x∈Rd

f(x) s.t. gi(x) ≤ 0 (i = 1, . . . , m).

where f(x) and gi(x) are convex functions

• This is called the primal problem

• To handle the constraints, we introduce Lagrange multipliers λi

• The Lagrangian function is:

L(x,λ) = f(x) +
m∑
i=1

λigi(x)

• What is the benefit of introducing the Lagrangian function?

Classification 2-35



The Dual Problem

Key observation:

min
x:g(x)≤0

f(x)︸ ︷︷ ︸
primal problem

(i)= min
x

max
λ≥0

L(x,λ)
(ii)
≥ max

λ≥0
min
x

L(x,λ)︸ ︷︷ ︸
=:d(λ)

= max
λ≥0

d(λ)︸ ︷︷ ︸
dual problem

• relation (i) and (ii) always holds (why?)

• relation (ii) is often an equality (strong duality theory)

• The dual function d(λ) = minx L(x,λ)

• The dual problem is to maximize the dual function d(λ):

max
λ≥0

d(λ)

Classification 2-36



Strong and Weak Duality

Weak Duality: For any x feasible in the primal and any λ ≥ 0, we have:

d(λ) ≤ f(x)

Strong Duality: If the problem satisfies certain conditions (e.g., Slater’s
condition), then:

min
x:g(x)≤0

f(x) = max
λ≥0

d(λ)

• Slater’s condition: the feasible region has an interior point, i.e.,

∃x0 ∈ Rd s.t. gi(x0) < 0 (i = 1, . . . , m).

• In convex optimization, strong duality often holds, meaning the primal
and dual problems have the same optimal value.

Classification 2-37



KKT Conditions

The Karush-Kuhn-Tucker (KKT) conditions: if strong duality holds, and
(x,λ) is the optimal solution pair for the primal/dual problem

min
x:g(x)≤0

f(x)︸ ︷︷ ︸
primal problem

= max
λ≥0

d(λ)︸ ︷︷ ︸
dual problem

,

then

• Primal feasibility: gi(x) ≤ 0

• Dual feasibility: λi ≥ 0

• Complementary slackness: λigi(x) = 0

• Stationarity: ∇f(x) +
∑m
i=1 λi∇gi(x) = 0

— This is a necessary condition!

Classification 2-38



Back to SVMs

min
β,β0

1
2∥β∥

2
2 s.t. yi(x⊤

i β + β0) ≥ 1 (i = 1, . . . , n)

• The dual problem for SVM is (why?):

max
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
⊤
i xj s.t.

n∑
i=1

αiyi = 0, αi ≥ 0

• It is straightforward to check that Slater’s condition holds
— primal and dual problems are equivalent!

• The dual problem is a quadratic programming problem, which is easier to
compute with standard software (e.g. CVX)

Classification 2-39



Checking KKT conditions

(P) min
β,β0

1
2∥β∥

2
2 s.t. yi(x⊤

i β + β0) ≥ 1 (i = 1, . . . , n)

(D) max
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
⊤
i xj s.t.

n∑
i=1

αiyi = 0, αi ≥ 0

The Karush-Kuhn-Tucker (KKT) conditions for optimality:

• Primal feasibility: yi(β⊤xi + β0) ≥ 1

• Dual feasibility: αi ≥ 0

• Complementary slackness: αi[yi(β⊤xi + β0)− 1] = 0

• Stationarity: β =
∑n
i=1 αiyixi

Classification 2-40



Implications

For any optimal solution pair (β⋆, β⋆0 , α⋆):

• Support vectors: data points xi with αi > 0

yi(β⋆⊤xi + β⋆0) > 1 =⇒ αi = 0
αi > 0 =⇒ yi(β⋆⊤xi + β⋆0) = 1

• Recovering the primal solution: after solving the dual problem (i.e.,
finding α⋆i ), we can recover the primal solution (β⋆, β⋆0) by

β⋆ =
n∑
i=1

α⋆i yixi

and β⋆0 = yi − β⊤xi for any support vector xi
— β⋆ is a linear combination of the support vectors

Classification 2-41



Accommodating non-separable data

SVM for linearly separable data:

min
β,β0

1
2∥β∥

2
2 s.t. yi(x⊤

i β + β0) ≥ 1 (i = 1, . . . , n)

• For non-separable data, we introduce slack variables ξi ≥ 0 to allow
violations of the margin:

min
β,β0,ξ

1
2∥β∥

2 + C

n∑
i=1

ξi

s.t. yi(β⊤xi + β0) ≥ 1− ξi, ξi ≥ 0 (i = 1, . . . , n)

• C > 0 is the “cost” parameter

• the separable case corresponds to C =∞

Classification 2-42



Dual problem: non-separable data

• Primal problem:

min
β,β0,ξ

1
2∥β∥

2 + C

n∑
i=1

ξi

s.t. yi(β⊤xi + β0) ≥ 1− ξi, ξi ≥ 0 (i = 1, . . . , n)

• Dual problem:

max
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
⊤
i xj

s.t.
n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C (i = 1, . . . , n)

• Homework: derive the dual problem from the primal problem

Classification 2-43



Dual problem: non-separable data

• Primal problem:

min
β,β0,ξ

1
2∥β∥

2 + C

n∑
i=1

ξi

s.t. yi(β⊤xi + β0) ≥ 1− ξi, ξi ≥ 0 (i = 1, . . . , n)

• Dual problem:

max
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
⊤
i xj

s.t.
n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C (i = 1, . . . , n)

• Homework: derive the dual problem from the primal problem

Classification 2-44



Kernel density classifier and naive Bayes classifier



Recap: Bayes optimal classifier

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

• Issue: depends on unknown data distribution ρ

• Bayes formula:

P(Y = y | X = x) = (X = x | Y = y) (Y = y)∑
y′∈Y(X = x | Y = y′) (Y = y′)

— Is it possible to estimate these quantities?
• Plug-in method:

◦ marginal probabilities P(Y = y) are easy to estimate (use frequency)
◦ key difficulty: estimate conditional densities P(X = x | Y = y)

Classification 2-46



Recap: Bayes optimal classifier

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

• Issue: depends on unknown data distribution ρ

• Bayes formula:

P(Y = y | X = x) = P(X = x | Y = y)P(Y = y)∑
y′∈Y P(X = x | Y = y′)P(Y = y′)

— Is it possible to estimate these quantities?

• Plug-in method:
◦ marginal probabilities P(Y = y) are easy to estimate (use frequency)
◦ key difficulty: estimate conditional densities P(X = x | Y = y)

Classification 2-46



Recap: Bayes optimal classifier

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

• Issue: depends on unknown data distribution ρ

• Bayes formula:

P(Y = y | X = x) = P̂(X = x | Y = y) P̂(Y = y)∑
y′∈Y P̂(X = x | Y = y′) P̂(Y = y′)

— Is it possible to estimate these quantities?
• Plug-in method:

◦ marginal probabilities P(Y = y) are easy to estimate (use frequency)
◦ key difficulty: estimate conditional densities P(X = x | Y = y)

Classification 2-46



Detour: density estimation



Setup: density estimation

• Target: an unknown density function f

• What we have: i.i.d. data X1, . . . , Xn ∼ f

• Goal: construct a good density estimation f̂(·) that satisfy

f̂(x) ≥ 0 and
∫ 1

0
f̂(x)dx = 1

• Criteria: mean integrated squared error (MISE)

MISE(f̂) = E
[ ∫ (

f̂(x)− f(x)
)2

dx

]
• Density estimation: find f̂ with as small MISE as possible

◦ Histogram method
◦ Kernel density estimation

Classification 2-48



Setup: density estimation

• Target: an unknown density function f

• What we have: i.i.d. data X1, . . . , Xn ∼ f

• Goal: construct a good density estimation f̂(·) that satisfy

f̂(x) ≥ 0 and
∫ 1

0
f̂(x)dx = 1

• Criteria: mean integrated squared error (MISE)

MISE(f̂) = E
[ ∫ (

f̂(x)− f(x)
)2

dx

]

• Density estimation: find f̂ with as small MISE as possible
◦ Histogram method
◦ Kernel density estimation

Classification 2-48



Setup: density estimation

• Target: an unknown density function f

• What we have: i.i.d. data X1, . . . , Xn ∼ f

• Goal: construct a good density estimation f̂(·) that satisfy

f̂(x) ≥ 0 and
∫ 1

0
f̂(x)dx = 1

• Criteria: mean integrated squared error (MISE)

MISE(f̂) = E
[ ∫ (

f̂(x)− f(x)
)2

dx

]
• Density estimation: find f̂ with as small MISE as possible

◦ Histogram method
◦ Kernel density estimation

Classification 2-48



Bias-variance tradeoff

Mean integrated squared error (MISE):

MISE(f̂) = E
[ ∫ (

f̂(x)− f(x)
)2

dx

]
• Bias: Measures how far the estimated density is from the true density on

average.
b(x) := E[f̂(x)]− f(x)

• Variance: Measures how much f̂(x) fluctuates around its mean:

v(x) := var(f̂(x)) = E[(f̂(x)− E[f̂(x)])2]

Theorem 2.4

MISE(f̂) =
∫

b2(x)dx +
∫

v(x)dx

Classification 2-49



A simple approach: histogram

Histogram method: estimate the density by partitioning the interval and
counting the frequency of data points in each partition

— credit to R.J. Oosterbaan
Classification 2-50



Histograms

• Consider 1D setting, and assume that f(·) is supported on [0, 1]
— we can always rescale the data to [0, 1]

• The data is divided into m bins of equal width h = 1/m (bandwidth)

B1 =
[
0,

1
m

)
, B2 =

[
1
m

,
2
m

)
, . . . , Bm =

[
m− 1

m
, 1
]

• Each bin is assigned a probability proportional to the number of
observations falling into that bin:

f̂(x) :=


p̂1/h, x ∈ B1,

...
...

p̂m/h, x ∈ Bm,

where p̂j = 1
n

n∑
i=1

1{Xi ∈ Bj}.

Classification 2-51



Optimal bandwidth

Theorem 2.5 (informal)
Under some regularity conditions, we have

MISE(f̂) ≈ h2

12

∫
f ′(u)2du + 1

nh

• The optimal bandwidth choice is

h⋆ = 1
n1/3

(
6∫

f ′(u)2du

)1/3

• With this choice of h⋆, we have

MISE(f̂) ≈ C

n2/3 where C =
(3

4

)2/3(∫
f ′(u)2du

)1/3
.

Classification 2-52



Cross-validation

• Issue: the optimal bandwidth h⋆ depends on the unknown density f

• Idea: estimate the risk under each bandwidth selection h

L(h) :=
∫ (

f̂(x) − f(x)
)2dx =

∫
f̂2(x)dx − 2

∫
f̂(x)f(x)dx︸ ︷︷ ︸

=:J(h)

+
∫

f2(x)dx

• Cross-validation estimate of the risk:

Ĵ(h) :=
∫

f̂2(x)dx− 2
n

n∑
i=1

f̂(−i)(Xi)

• It can be shown that Ĵ(h) ≈ E[J(h)]

• Cross validation: select h that minimizes Ĵ(h)

• HW: prove the formula below that allows efficient computation of Ĵ(h):

Ĵ(h) = 2
(n− 1)h −

n + 1
n− 1

m∑
j=1

p̂2
j

Classification 2-53



Cross-validation

• Issue: the optimal bandwidth h⋆ depends on the unknown density f

• Idea: estimate the risk under each bandwidth selection h

L(h) :=
∫ (

f̂(x) − f(x)
)2dx =

∫
f̂2(x)dx − 2

∫
f̂(x)f(x)dx︸ ︷︷ ︸

=:J(h)

+
∫

f2(x)dx

• Cross-validation estimate of the risk:

Ĵ(h) :=
∫

f̂2(x)dx− 2
n

n∑
i=1

f̂(−i)(Xi)

• It can be shown that Ĵ(h) ≈ E[J(h)]

• Cross validation: select h that minimizes Ĵ(h)

• HW: prove the formula below that allows efficient computation of Ĵ(h):

Ĵ(h) = 2
(n− 1)h −

n + 1
n− 1

m∑
j=1

p̂2
j

Classification 2-53



Limitation of the histogram method

• Histograms are discontinuous (not a continuous density)

• The convergence rate O(n−2/3) is not ideal

• Complicated in higher dimension (number of bins will be exponential in
dimension)

• A better solution: kernel density estimation

Classification 2-54



Kernel Density Estimation (KDE)

Kernel density estimator (KDE):

f̂(x) = 1
n

n∑
i=1

1
h

K

(
x− xi

h

)
where K(·) is a kernel function and h > 0 is the bandwidth

• Kernel function: any function K(x) ≥ 0 that satisfies∫
K(x)dx = 1,

∫
xK(x)dx = 0,

∫
x2K(x)dx > 0

• Common kernel function:
◦ Gaussian Kernel: K(x) = 1√

2π e−x2/2

◦ Epanechnikov kernel: K(x) = 3
4

√
5 (1− x2

5 )1{|x| <
√

5}

Classification 2-55



Optimal bandwidth

Theorem 2.6
Under some regularity conditions, we have

R(f, f̂n) ≈ h4

4

(∫
x2K(x)dx

)2 ∫
(f ′′(x))2 dx + 1

nh

∫
K2(x)dx.

The optimal bandwidth is

h∗ = 1
n1/5

(∫
x2K(x)dx

)−2/5(∫
K2(x)dx

)1/5(∫
(f ′′(x))2

dx
)−1/5

With this choice of bandwidth,

R(f, f̂n) ≍ 1
n4/5 .

Classification 2-56



Cross-validation
Cross-validation: estimate the risk under each bandwidth selection h

L(h) :=
∫ (

f̂(x)−f(x)
)2dx =

∫
f̂2(x)dx− 2

∫
f̂(x)f(x)dx︸ ︷︷ ︸

=:J(h)

+
∫

f2(x)dx

• Estimating J(h):

Ĵ(h) :=
∫

f̂2(x)dx− 2
n

n∑
i=1

f̂(−i)(Xi)

It can be shown that E[Ĵ(h)] = E[J(h)]

• Cross validation: select h that minimizes Ĵ(h)

• An efficient formula for approximatly computing Ĵ(h):

Ĵ(h) ≈ 1
n2

n∑
i=1

n∑
j=1

1
h

K∗(Xi −Xj

h

)
+ 2

nh
K(0)

where K∗(x) =
∫

K(x− y)K(y)dy − 2K(x)

Classification 2-57



Theoretical guarantees for cross validation

Theorem 2.7 (Stone’s Theorem)

Suppose that f is bounded. Let f̂h be the KDE with bandwidth h, and let ĥ
be the bandwidth chosen by cross-validation. Then

MISE(f̂
ĥ
)

infh MISE(f̂h)
P→ 1

as n→∞.

• Stone’s theorem provides theoretical justification for using cross-validation
to select bandwidth for KDE.

Classification 2-58



Implications

Faster convergence rate: O(n−4/5)︸ ︷︷ ︸
KDE

vs. O(n−2/3)︸ ︷︷ ︸
histogram

Extension to higher dimension: consider estimating a density f in Rd

• kernel function K: symmetric density (e.g., density of N (0, Id))

• KDE: for a symmetric, PSD bandwidth matrix H ∈ Rd×d

f̂(x) = 1
n

n∑
i=1

det(H)−1/2K
(
H−1/2(x− xi)

)
• bandwidth selection: Silverman’s rule of thumb

Hi,i =
( 4

n(d + 2)

)2/(d+4)
σi (1 ≤ i ≤ d), Hi,j = 0 (i ̸= j).

where σ2
i is the variance of the i-th variable.

• suffers from curse of dimensionality (error exponential in d)

Classification 2-59



Kernel Density Classifier

Bayes optimal classifier:

P(Y = k | X = x) = P(X = x | Y = k)P(Y = k)∑K
k′=1 P(X = x | Y = k′)P(Y = k′)

• Construct a KDE f̂k(x) for the conditional density P(X = x | Y = k)
using data {xi : yi = k} for each class k ∈ {1, . . . , K},

• Estimate class priors P(y = k) with empirical frequency π̂k = nk/n

• Kernel density classifier: for any input x, return

arg max
1≤k≤K

P̂(Y = k | X = x) := π̂kf̂k(x)∑K
k′=1 π̂k′ f̂k′(x)

• Issue: curse of dimensionality

Classification 2-60



Kernel Density Classifier

Bayes optimal classifier:

P(Y = k | X = x) = P(X = x | Y = k)P(Y = k)∑K
k′=1 P(X = x | Y = k′)P(Y = k′)

• Construct a KDE f̂k(x) for the conditional density P(X = x | Y = k)
using data {xi : yi = k} for each class k ∈ {1, . . . , K},

• Estimate class priors P(y = k) with empirical frequency π̂k = nk/n

• Kernel density classifier: for any input x, return

arg max
1≤k≤K

P̂(Y = k | X = x) := π̂kf̂k(x)∑K
k′=1 π̂k′ f̂k′(x)

• Issue: curse of dimensionality

Classification 2-60



Naive Bayes Classifier

• The Naive Bayes model assumes that given a class Y = k, the features
X1, . . . , Xd are conditionally independent.

• The class-conditional density fk(x) ≡ P(X = x | Y = k) is given by:

fk(x) =
d∏
j=1

fk,j(xj) where x = (x1, . . . , xd)

where fk,j(Xk) is the marginal density of Xj conditional on Y = k

• Naive Bayes classifier: for any input x, return

arg max
1≤k≤K

P̂(Y = k | X = x) := π̂kf̂k(x)∑K
k′=1 π̂k′ f̂k′(x)

where f̂k(x) =
∏d
j=1 f̂k,j(xj).

• The estimate f̂k,j for class-conditional marginal densities fk,j can be
computed using e.g., one-dimensional KDE or histogram

Classification 2-61



Discussions

• Naive Bayes works well in high-dimensional spaces and with small
datasets, despite the independence assumption often being violated.

• Advantages:
◦ Simple and fast
◦ Avoids curse of dimensionality
◦ Robust to irrelevant features

• Disadvantages:
◦ Assumption of feature independence might be unrealistic

Classification 2-62



Tree-based methods



Classification tree
South African heart disease data: ”0”=”Yes, Disease”, ”1”=”No”

Classification 2-64



Classification tree

Setup: X = Rd, Y = {1, . . . , K}, training data (X1, Y1), . . . , (Xn, Yn)
Idea: grow a tree to recursively partition the feature space into a set of
rectangles, and do a simple majority vote in each rectangle

• Each node represents a rectangle in the feature space. The root node is
the feature space X = Rd

• Each node is either a leaf (no children) or a parent (has two children)
• The left and right children comes from a partition of their parent node
• Suppose we have a collection of final partitioned regions associated with

the leaves at the bottom of the tree, denoted by R1, . . . , RM

• For any input x, suppose that x ∈ Rj , then this classification tree returns

f̂(x) = arg max
k∈Y

∑
Xi∈Rj

1{Yi = k}

i.e., the predicted label is the majority in the region Rj

Classification 2-65



How to grow a classification tree?

In order to grow a classification tree, we need to ask:

1. How to split each parent node?

2. How large should we grow the tree?

For the first question: minimizing impurity

• Suppose that the parent node is associated with a rectangle R

• Choose a covariate Xj and a split point t that minimizes the impurity

• Let the rectangles associated with its left and right children be
R1(j, t) = {X ∈ R : Xj ≤ t} and R2(j, t) = {X ∈ R : Xj > t},

For the second question: set some stopping criteria.

• For example, we may fix some number n0, and we might stop partition a
node when its associated rectangle has fewer than n0 training data points.

Classification 2-66



Impurity function

Let R be the node to be split into two regions. We choose

arg min
j,t

|R1(j, t)|
|R|

γ(R1(j, t)) + |R2(j, t)|
|R|

γ(R2(j, t))︸ ︷︷ ︸
impurity function

,

• Here γ(R) measures the “variance” of the labels of data in R: we want
{Yi : Xi ∈ R} to have low variability

• For any given rectangle R, let

pk = 1
|R|

∑
Xi∈R

1{Yi = k}, 1 ≤ k ≤ K.

Two common choice of the function γ(·):
◦ Gini index: γ(R) =

∑
k pk(1− pk)

◦ Cross entropy: γ(R) = −
∑
k pk log pk

Classification 2-67



Insights

• advantage: the tree structure provides great interpretability
◦ for example, it allows reasoning about the cause of diseases

• disadvantage: instability due to the use of greedy search:
◦ splitting process is greedy
◦ small changes in the training data can lead to significantly different

tree structures

• Solutions:
◦ Regularization: controlling tree growth parameters
◦ Pruning: removing branches that do not provide significant

predictive power
◦ Ensemble Methods: use bagging to create a random forest

Classification 2-68



Bootstrap aggregating (Bagging)

• Training data Zn = {(Xi, Yi), 1 ≤ i ≤ n}

• Bootstrap sample Z(∗b) = {(X(∗b)
i , Y

(∗b)
i ), 1 ≤ i ≤ n}: sample n data

points randomly from Zn with replacement
• Apply the learning algorithm to the bootstrap sample for B times, and

produce outcomes f̂b

• Majority vote: f̂bagging(x) = arg maxk∈Y
∑B
b=1 1{f̂b(x) = k}

Classification 2-69



Insights

• Trees generated in bagging are identically distributed (not independent!)

• Bias of bagged tress is the same as the individual tree

• Pro: Reduce the variance, so good for high-variance, low-bias procedures,
like trees.

• Heuristics: Suppose we have B identically distributed random variables
with variance σ2 and positive pairwise correlation ρ, then their average
has variance of

ρσ2 + 1− ρ

B
σ2

• Increasing B does not reduce the first term
— Random Forest!

Classification 2-70



Random forests

• Key idea: use random dropout to decorrelate bootstrapped trees
• When growing a tree on a bootstrapped sample, before each split of the

node, select m≪ d variables at random as candidates to split
• Typical values for m is

√
d.

• Majority vote: f̂RF(x) = arg maxk∈Y
∑B
b=1 1{f̃b(x) = k}

Classification 2-71



How to remove bias: Boosting

• Setup: X = Rd, Y = {±1}
• Weak classifier: error rate only slightly better than random guess
• Key idea: sequentially apply weak classification algorithm to repeatedly

modified versions of the data to produce a sequence of weak classifiers
◦ assign unequal weights to training data points

— possible for trees
◦ sequentially find a committee of weak classifiers {f̂m}Mm=1
◦ produce the final prediction through a weighted majority vote

f̂(x) := sign(
M∑
m=1

αmf̂m(x))

Classification 2-72



AdaBoost

Initialization: set the weights wi = 1/n for 1 ≤ i ≤ n.
For m = 1, . . . , M :

• Fit a weak classifier f̂m(x) using training data with weights ω1, . . . , ωn

• Compute the weighted misclassification error:

err(m) =
∑n
i=1 wi 1{Yi ̸= f̂m(Xi)}∑n

i=1 wi
.

• Compute:

αm = log
(1− err(m)

err(m)

)
.

• Update the weights by:

wi ← wi · exp
(
αm · 1{Yi ̸= f̂m(Xi)}

)
, i = 1, 2, . . . , n.

Output: f̂(x) = sign
(∑M

m=1 αmf̂m(x)
)
.

Classification 2-73



AdaBoost: insights

Key idea: in the weight update step

wi ← wi · exp
(
αm · 1{Yi ̸= f̂m(Xi)}

)
, i = 1, 2, . . . , n.

• For incorrectly classified data points, their weights get inflated by eαm

• Note that αm > 0 should always hold

• This re-weighting encourages the next classifier to focus more on the
misclassified data points

Classification 2-74



Discussion: three main approaches to classification



Three main approaches

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

minimizes the Bayes risk R(f) = P(f(X) ̸= Y )

• Plug-in approach

• Regression

• Empirical risk minimization

• Other approaches: SVM, tree-based methods...

Classification 2-76



Three main approaches

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

minimizes the Bayes risk R(f) = P(f(X) ̸= Y )

• Plug-in approach: model data distribution ρ, then estimate densities

P(Y = y | X = x) = P(X = x | Y = y)P(Y = y)∑
y′∈Y P(X = x | Y = y′)P(Y = y′)

• Regression

• Empirical risk minimization

• Other approaches: SVM, tree-based methods...

Classification 2-76



Three main approaches

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

minimizes the Bayes risk R(f) = P(f(X) ̸= Y )

• Plug-in approach: model data distribution ρ, then estimate densities

P(Y = y | X = x) = P̂(X = x | Y = y) P̂(Y = y)∑
y′∈Y P̂(X = x | Y = y′) P̂(Y = y′)

Example: LDA, QDA, Kernel density classifier

• Regression

• Empirical risk minimization

• Other approaches: SVM, tree-based methods...

Classification 2-76



Three main approaches

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

minimizes the Bayes risk R(f) = P(f(X) ̸= Y )

• Plug-in approach

• Regression: modeling and estimating each

rk(x) := P(Y = k | X = x) for k = 1, . . . , K

• Empirical risk minimization

• Other approaches: SVM, tree-based methods...

Classification 2-76



Three main approaches

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

minimizes the Bayes risk R(f) = P(f(X) ̸= Y )

• Plug-in approach

• Regression: modeling and estimating each

rk(x) := P(Y = k | X = x) for k = 1, . . . , K

Example: logistic regression

• Empirical risk minimization

• Other approaches: SVM, tree-based methods...

Classification 2-76



Three main approaches

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

minimizes the Bayes risk R(f) = P(f(X) ̸= Y )

• Plug-in approach

• Regression

• Empirical risk minimization: choose a set of classifiers F and find f̂ ∈ F
that minimizes the “empirical risk”:

Rn(f) := 1
n

n∑
i=1

1{f(Xi) ̸= Yi}

Intuition: when n is large, Rn(f) ≈ R(f) by LLN

• Other approaches: SVM, tree-based methods...

Classification 2-76



Three main approaches

Bayes optimal classifier: for any x ∈ X , output

f⋆(x) := arg max
y∈Y

P(Y = y | X = x)

minimizes the Bayes risk R(f) = P(f(X) ̸= Y )

• Plug-in approach

• Regression

• Empirical risk minimization

• Other approaches: SVM, tree-based methods...

Classification 2-76



ERM: advantages

f̂n = arg min
f∈F

1
n

n∑
i=1

1{f(Xi) ̸= Yi} =: Rn(f)

• a straightforward method based on simple heuristics
— robustness!

• can be easily generalized to other loss ℓ(·, ·) by considering

Rn(f) := 1
n

n∑
i=1

ℓ(f(Xi), Yi)

if the ultimate goal is to minimize Rℓ(f) = E[ℓ(f(X), Y )]. For example,
in binary classification (i.e., Y = {0, 1})
◦ Hinge loss ℓ(f(x), y) = max{0, 1− yf(x)}
◦ Logistic loss ℓ(f(x), y) = log(1 + exp(−yf(x)))

— Logistic regression can also be viewed as ERM!

Classification 2-77



ERM: disadvantages

f̂n = arg min
f∈F

1
n

n∑
i=1

1{f(Xi) ̸= Yi} =: Rn(f)

• Not easy to compute (due to nonsmoothness of the indicator function)

• Solution: in binary classification (i.e., Y = {0, 1}), consider using hinge
loss or logistic loss ℓ(·)

Rn(f) := 1
n

n∑
i=1

ℓ(f(Xi), Yi)

and relax f : Rd → R, and finally output sign(2(f(x)− 1))

• Here we will only focus on the standard ERM

Classification 2-78



ERM: error decomposition

f̂n = arg min
f∈F

1
n

n∑
i=1

1{f(Xi) ̸= Yi} =: Rn(f)

• We want to control the excess risk

R(f̂n)−R(f⋆) = R(f̂n)−min
f∈F

R(f)︸ ︷︷ ︸
≥0, statistical error

+ min
f∈F

R(f)−R(f⋆)︸ ︷︷ ︸
≥0, approximation error

• approximation error: becomes smaller when choosing larger F
— becomes 0 when f⋆ ∈ F

• statistical error: becomes smaller when n becomes larger, and when
choosing smaller F (why?)

• trade-off between fit and complexity

• In this course, we will focus on understanding statistical error with a given
F that includes f⋆ (so that approximation error = 0)

Classification 2-79



Excess risk via uniform deviations

f̂n = arg min
f∈F

1
n

n∑
i=1

1{f(Xi) ̸= Yi} =: Rn(f)

Theorem 2.8
The excess risk is upper bounded by

R(f̂n)−R(f⋆) ≤ 2 sup
f∈F
|Rn(f)−R(f)|

Implications:

• For a given f , we know that Rn(f)→ R(f) at a rate O(1/
√

n) by CLT
√

n
(
Rn(f)−R(f)

) d→ N (0, var(1{f(X) ̸= Y }))

• But what about the uniform convergence of supf∈F |Rn(f)−R(f)|?

Classification 2-80



Concentration inequalities and uniform convergence



Why concentration inequalities?

Consider i.i.d. variables X1, . . . , Xn with E[Xi] = µ and var(Xi) = σ2

• Central limit theorem (CLT):

√
n
( 1

n

n∑
i=1

Xi − µ
)

d→ N (0, σ2)

tells us that the sample average concentrates around µ, and the deviation
scales like σ/

√
n as n→∞

• But this does not say anything useful when n is finite

• We want some non-asymptotic statement like:

P
(∣∣∣ 1

n

n∑
i=1

Xi − µ
∣∣∣ ≥ ε(n, δ)

)
≤ δ

holds for any δ > 0, where ε(n, δ) > 0 is some quantity that depends on
the sample size n and the exceptional probability δ

Classification 2-82



A simple case with i.i.d. Gaussian

Suppose that X1, . . . , Xn
i.i.d.∼ N (µ, σ2), then we have

1
n

n∑
i=1

Xi − µ ∼ N
(

0,
σ2

n

)
Theorem 2.9
For G ∼ N (0, 1) and any t > 0, we have(1

t
− 1

t3

) 1√
2π

e−t2/2 ≤ P(G ≥ t) ≤ 1
t

1√
2π

e−t2/2.

As a result,

P
(∣∣∣ 1

n

n∑
i=1

Xi − µ
∣∣∣ ≥ t

)
≤ 2σ√

nt

1√
2π

exp
(
− nt2

2σ2

)

Question: how can we extend these to more general distributions?

Classification 2-83



A simple case with i.i.d. Gaussian

Suppose that X1, . . . , Xn
i.i.d.∼ N (µ, σ2), then we have

1
n

n∑
i=1

Xi − µ ∼ N
(

0,
σ2

n

)
Theorem 2.9
For G ∼ N (0, 1) and any t > 0, we have(1

t
− 1

t3

) 1√
2π

e−t2/2 ≤ P(G ≥ t) ≤ 1
t

1√
2π

e−t2/2.

As a result,

P
(∣∣∣ 1

n

n∑
i=1

Xi − µ
∣∣∣ ≥ t

)
≤ 2σ√

nt

1√
2π

exp
(
− nt2

2σ2

)

Question: how can we extend these to more general distributions?

Classification 2-83



From Gaussian to sub-Gaussian

• Question: can we generalize these results to other random variables?

• Idea: consider other random variables with similar tail probability

• From Theorem 3.2, we know that for G ∼ N (0, σ2),

P(|G| ≥ t) ≲ e−t2/σ2
for all t ≥ 0

• We may consider random variables satisfy this type of tail properties
— sub-Gaussian

Classification 2-84



Sub-Gaussian properties

Let X be a random variable, then the following properties are equivalent:

1. The tails of X satisfy

P(|X| ≥ t) ≤ 2 exp
(
−t2/K2

1
)

for all t ≥ 0
2. The moments of X satisfy

∥X∥Lp := (E[|X|p])1/p ≤ K2
√

p for all p ≥ 1
3. The moment generating function (MGF) of X2 satisfies

E
[

exp(λ2X2)
]
≤ exp(K2

3 λ2) for all λ such that |λ| ≤ 1/K3

4. The MGF of X2 is bounded at some point, namely

E
[

exp
(
X2/K2

4
) ]
≤ 2.

5. If EX = 0, then the MGF of X satisfies

E
[

exp(λX)
]
≤ exp(K2

5 λ2) for all λ ∈ R.

where K1, . . . , K5 > 0 may differ by at most a multiplicative constant factor

Classification 2-85



Sub-Gaussian distributions: definition

• If X satisfies one of properties 1-4, it is a sub-Gaussian random variable.

• The sub-Gaussian norm of X, denoted ∥X∥ψ2 , is defined to be the
smallest K4 in property 4. In other words, we define

∥X∥ψ2 = inf
{

t > 0 : E exp
(
X2/t2) ≤ 2

}
.

— can also be defined using K1, K2 or K3

• Properties: there exists some absolute constants c, C > 0 such that
◦ P (|X| ≥ t) ≤ 2 exp

(
− ct2/∥X∥2

ψ2

)
◦ ∥X∥Lp ≤ C∥X∥ψ2

√
p

◦ E exp
(
X2/∥X∥2

ψ2

)
≤ 2

◦ if E[X] = 0, then E exp(λX) ≤ exp(Cλ2∥X∥2
ψ2

)

Classification 2-86



Sub-Gaussian distributions: examples

• Gaussian: if X ∼ N (0, σ2), then X is sub-Gaussian with

∥X∥ψ2 ≤ Cσ

for some universal constant C = 2
√

2/3.

• Bounded: any bounded random variable X is sub-Gaussian with

∥X∥ψ2 ≤ C∥X∥∞

for some universal constant C = 1/
√

log 2.

Sub-Gaussian norm can be viewed as a characterization of “magnitude” for
light tail distributions.

Classification 2-87



Centering and independent sums

Theorem 2.10

• If X is sub-Gaussian, then X − E[X] is sub-Gaussian with

∥X − E[X]∥ψ2 ≤ C∥X∥ψ2

where C is an absolute constant.

• Let X1, . . . , XN be independent, mean zero, sub-Gaussian random
variables. Then the sum SN =

∑N
i=1 Xi is also sub-Gaussian, and its

sub-Gaussian norm satisfies

∥SN∥2
ψ2
≤ C

N∑
i=1
∥Xi∥2

ψ2
,

where C is an absolute constant.

Analog:
• If X1, . . . , Xn are i.i.d. N (0, σ2), then SN ∼ N (0, Nσ2)
• If X1, . . . , Xn are independent with ∥Xi∥ψ2 ≤ σ, then ∥SN∥ψ2 ≲

√
Nσ

Classification 2-88



Hoeffding’s inequality

Theorem 2.11 (Hoeffding’s Inequality)
Let X1, . . . , XN be independent, mean-zero, sub-Gaussian random variables.
Then, for any t ≥ 0, we have:

P

(∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2∑N

i=1 ∥Xi∥2
ψ2

)
,

where c is an absolute constant.

Classification 2-89



Implications

• General Hoeffding: under the setup of Theorem 3.4, consider any vector
a = (a1, . . . , an) ∈ Rn, we have

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2

K2∥a∥2
2

)
,

where K := max ∥Xi∥ψ2 .

• Example: suppose that Xi ∼ Bernoulli(pi) for 1 ≤ i ≤ n, then

P

(∣∣∣∣∣
N∑
i=1

(Xi − pi)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−ct2

N

)
,

A sharper result for binomial concentration: Chernoff’s inequality (HW)

Classification 2-90



Back to ERM: finite F

f̂n = arg min
f∈F

1
n

n∑
i=1

1{f(Xi) ̸= Yi} =: Rn(f)

Theorem 2.12
Suppose that F is a finite set. Then with probability exceeding 1− δ, the
excess risk of ERM is upper bounded by

R(f̂n)−R(f⋆) ≤ C

√
log(|F|/δ)

n
.

for some universal constant C > 0.

• Key proof idea: union bound argument
• What if F is not finite (e.g., the set of linear classifiers)?

— use VC dimension!

• But before going into that, let’s first warm up with something simpler

Classification 2-91



Back to ERM: finite F

f̂n = arg min
f∈F

1
n

n∑
i=1

1{f(Xi) ̸= Yi} =: Rn(f)

Theorem 2.12
Suppose that F is a finite set. Then with probability exceeding 1− δ, the
excess risk of ERM is upper bounded by

R(f̂n)−R(f⋆) ≤ C

√
log(|F|/δ)

n
.

for some universal constant C > 0.

• Key proof idea: union bound argument
• What if F is not finite (e.g., the set of linear classifiers)?

— use VC dimension!
• But before going into that, let’s first warm up with something simpler
Classification 2-91



ℓ2 norm of a sub-Gaussian random vector

• Consider a random vector x = (X1, . . . , Xd), where X1, . . . , Xd are
independent random variables with E[Xi] = 0 and ∥Xi∥ψ2 ≤ σ

• Can we establish a non-asymptotic upper bound for ∥x∥2?

• Solution 1: entrywise concentration and union bound

P
(
∥x∥2 ≤ Cσ

√
d log(d/δ)

)
≥ 1− δ

for some universal constant C > 0

• Solution 2: uniform concentration using

∥x∥2 = sup
a∈Sd−1

a⊤x

where Sd−1 := {x ∈ Rd : ∥x∥2 = 1} is the unit sphere in Rd

— could this provide a better concentration bound?

Classification 2-92



ℓ2 norm of a sub-Gaussian random vector

• Consider a random vector x = (X1, . . . , Xd), where X1, . . . , Xd are
independent random variables with E[Xi] = 0 and ∥Xi∥ψ2 ≤ σ

• Can we establish a non-asymptotic upper bound for ∥x∥2?

• Solution 1: entrywise concentration and union bound

P
(
∥x∥2 ≤ Cσ

√
d log(d/δ)

)
≥ 1− δ

for some universal constant C > 0

• Solution 2: uniform concentration using

∥x∥2 = sup
a∈Sd−1

a⊤x

where Sd−1 := {x ∈ Rd : ∥x∥2 = 1} is the unit sphere in Rd

— could this provide a better concentration bound?

Classification 2-92



ℓ2 norm of a sub-Gaussian random vector

• Consider a random vector x = (X1, . . . , Xd), where X1, . . . , Xd are
independent random variables with E[Xi] = 0 and ∥Xi∥ψ2 ≤ σ

• Can we establish a non-asymptotic upper bound for ∥x∥2?

• Solution 1: entrywise concentration and union bound

P
(
∥x∥2 ≤ Cσ

√
d log(d/δ)

)
≥ 1− δ

for some universal constant C > 0

• Solution 2: uniform concentration using

∥x∥2 = sup
a∈Sd−1

a⊤x

where Sd−1 := {x ∈ Rd : ∥x∥2 = 1} is the unit sphere in Rd

— could this provide a better concentration bound?

Classification 2-92



Operator norm of sub-Gaussian matrix

• Consider a random matrix X = (Xi,j)1≤i,j≤d with independent entries
that satisfies E[Xi,j ] = 0 and ∥Xi,j∥ψ2 ≤ σ

• Can we establish a non-asymptotic upper bound for ∥X∥?

• Operator norm:

∥X∥ = sup
a∈Sd−1

∥Xa∥2 = sup
a,b∈Sd−1

a⊤Xb

where Sd−1 := {x ∈ Rd : ∥x∥2 = 1} is the unit sphere in Rd

Classification 2-93



A framework for uniform concentration

• Goal: upper bounding supa∈Sd−1 a⊤x

• Step 1: pointwise concentration. For any fixed a ∈ Sd−1, we can use
Hoeffding’s inequality to get

P
(
|a⊤x| ≤ Cσ

√
log(1/δ)

)
≥ 1− δ

for some universal constant C > 0

• Difficulty: the unit sphere Sd−1 is not a finite set, union bound argument
does not work

• Idea: find a finite subset N of Sd−1 that is fine enough, such that

sup
a∈Sd−1

a⊤x
?
≲ sup

a∈N
a⊤x ≤ Cσ

√
log(|N |/δ)

with probability at least 1− δ

Classification 2-94



Epsilon net

• Let (T, d) be a metric space. Consider a subset K ⊂ T and let ε > 0.
— e.g., consider T = Rd, d(·, ·) is Euclidean distance, K = Sd−1

• A subset N ⊆ K is called an ε-net of K if every point in K is within
distance ε of some point of N , i.e.,

∀x ∈ K, ∃x0 ∈ N s.t. d(x, x0) ≤ ε.

Theorem 2.13
Let Nε be an ε-net of Sd−1. If ε < 1, then for any x ∈ Rd,

sup
a∈Nε

a⊤x ≤ sup
a∈Sd−1

a⊤x ≤ 1
1− ε

sup
a∈Nε

a⊤x,

and if ε < 1/2, then for any X ∈ Rd×d,

sup
a,b∈Nε

a⊤Xb ≤ sup
a,b∈Sd−1

a⊤Xb ≤ 1
1− 2ε

sup
a,b∈Nε

a⊤Xb.

Classification 2-95



The covering number

Covering number: the smallest possible cardinality of an ε-net of K,
denoted by N (K, ε)

Theorem 2.14
The covering number of Sd−1 is upper bounded by

N (Sd−1, ε) ≤
(

2
ε

+ 1
)d

Classification 2-96



ℓ2 norm of sub-Gaussian random vector

• Goal: upper bounding supa∈Sd−1 a⊤x

• Step 1: pointwise concentration. For any fixed a ∈ Sd−1, we can use
Hoeffding’s inequality to get

P
(
|a⊤x| ≤ C1σ

√
log(1/δ)

)
≥ 1− δ

for some universal constant C1 > 0

• Step 2: uniform concentration over an 1/2-net. Let N1/2 be the
smallest 1/2-net of Sd−1. By union bound argument and Theorem 3.7,

P
(

sup
a∈N1/2

|a⊤x| ≤ C2σ
√

d log(1/δ)
)
≥ 1− δ

for some universal constant C2 > 0

• Step 3: approximation. By Theorem 3.6,

P
(
∥x∥2 ≤ C3σ

√
d log(1/δ)

)
≥ 1− δ

for some universal constant C3 > 0

Classification 2-97



ℓ2 norm of sub-Gaussian random vector

• Goal: upper bounding supa∈Sd−1 a⊤x

• Step 1: pointwise concentration. For any fixed a ∈ Sd−1, we can use
Hoeffding’s inequality to get

P
(
|a⊤x| ≤ C1σ

√
log(1/δ)

)
≥ 1− δ

for some universal constant C1 > 0

• Step 2: uniform concentration over an 1/2-net. Let N1/2 be the
smallest 1/2-net of Sd−1. By union bound argument and Theorem 3.7,

P
(

sup
a∈N1/2

|a⊤x| ≤ C2σ
√

d log(1/δ)
)
≥ 1− δ

for some universal constant C2 > 0

• Step 3: approximation. By Theorem 3.6,

P
(
∥x∥2 ≤ C3σ

√
d log(1/δ)

)
≥ 1− δ

for some universal constant C3 > 0

Classification 2-97



ℓ2 norm of sub-Gaussian random vector

• Goal: upper bounding supa∈Sd−1 a⊤x

• Step 1: pointwise concentration. For any fixed a ∈ Sd−1, we can use
Hoeffding’s inequality to get

P
(
|a⊤x| ≤ C1σ

√
log(1/δ)

)
≥ 1− δ

for some universal constant C1 > 0

• Step 2: uniform concentration over an 1/2-net. Let N1/2 be the
smallest 1/2-net of Sd−1. By union bound argument and Theorem 3.7,

P
(

sup
a∈N1/2

|a⊤x| ≤ C2σ
√

d log(1/δ)
)
≥ 1− δ

for some universal constant C2 > 0

• Step 3: approximation. By Theorem 3.6,

P
(
∥x∥2 ≤ C3σ

√
d log(1/δ)

)
≥ 1− δ

for some universal constant C3 > 0

Classification 2-97



Operator norm of sub-Gaussian random matrix

• Goal: upper bounding supa,b∈Sd−1 a⊤Xb

• Step 1: pointwise concentration. For any fixed a, b ∈ Sd−1, we can
use Hoeffding’s inequality to get

P
(
|a⊤Xb| ≤ C1σ

√
log(1/δ)

)
≥ 1− δ

for some universal constant C1 > 0

• Step 2: uniform concentration over an 1/4-net. Let N1/4 be the
smallest 1/4-net of Sd−1. By union bound argument and Theorem 3.7,

P
(

sup
a,b∈N1/4

|a⊤Xb| ≤ C2σ
√

d log(1/δ)
)
≥ 1− δ

for some universal constant C2 > 0

• Step 3: approximation. By Theorem 3.6,

P
(
∥X∥2 ≤ 2C2σ

√
d log(1/δ)

)
≥ 1− δ

for some universal constant C3 > 0

Classification 2-98



Operator norm of sub-Gaussian random matrix

• Goal: upper bounding supa,b∈Sd−1 a⊤Xb

• Step 1: pointwise concentration. For any fixed a, b ∈ Sd−1, we can
use Hoeffding’s inequality to get

P
(
|a⊤Xb| ≤ C1σ

√
log(1/δ)

)
≥ 1− δ

for some universal constant C1 > 0

• Step 2: uniform concentration over an 1/4-net. Let N1/4 be the
smallest 1/4-net of Sd−1. By union bound argument and Theorem 3.7,

P
(

sup
a,b∈N1/4

|a⊤Xb| ≤ C2σ
√

d log(1/δ)
)
≥ 1− δ

for some universal constant C2 > 0

• Step 3: approximation. By Theorem 3.6,

P
(
∥X∥2 ≤ 2C2σ

√
d log(1/δ)

)
≥ 1− δ

for some universal constant C3 > 0

Classification 2-98



Operator norm of sub-Gaussian random matrix

• Goal: upper bounding supa,b∈Sd−1 a⊤Xb

• Step 1: pointwise concentration. For any fixed a, b ∈ Sd−1, we can
use Hoeffding’s inequality to get

P
(
|a⊤Xb| ≤ C1σ

√
log(1/δ)

)
≥ 1− δ

for some universal constant C1 > 0

• Step 2: uniform concentration over an 1/4-net. Let N1/4 be the
smallest 1/4-net of Sd−1. By union bound argument and Theorem 3.7,

P
(

sup
a,b∈N1/4

|a⊤Xb| ≤ C2σ
√

d log(1/δ)
)
≥ 1− δ

for some universal constant C2 > 0

• Step 3: approximation. By Theorem 3.6,

P
(
∥X∥2 ≤ 2C2σ

√
d log(1/δ)

)
≥ 1− δ

for some universal constant C3 > 0
Classification 2-98



VC dimension

• Let F be a class of binary functions on the domain X .

• Shattering: a set of points {x1, . . . , xk} ⊆ X is shattered by F if for
every possible labeling {0, 1}k, there exists a function f ∈ F that realizes
the labeling.

• The VC dimension of F , denoted VC(F), is the largest integer k such
that there exists a set of k points in X that can be shattered by F .

• Examples:
◦ When X = R2, F = linear classifiers, we have vc(F) = 3
◦ In general, when X = Rd, F = linear classifiers, then vc(F) = d + 1

Classification 2-99



Bounding excess risk via VC dimension

f̂n = arg min
f∈F

1
n

n∑
i=1

1{f(Xi) ̸= Yi} =: Rn(f)

Theorem 2.15
Suppose that F is a class of Boolean function with vc(F) <∞. Then with
probability exceeding 1− δ,

R(f̂n)−R(f⋆) ≤ C

√
vc(F) log(1/δ)

n

for some universal constant C > 0.

Implications:
• For F = linear classifiers in Rd, the excess risk is O(

√
d/n).

Classification 2-100


