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From classification to regression

Classification:

e there is a joint distribution of (X,Y) ~ p where typically X € R? and
Y e {1,...,K} is discrete

e Goal: given input z, find the label y with the highest posterior probability

arg max ]P(Y =yl X = x)
ye{l,...,.K}

Regression:
e there is a joint distribution of (X,Y) ~ p where X € R? and Y € R

e Goal: given input z, find a prediction f(x) for Y conditional on X = z,
that minimizes MSE
E[(Y - f(2))2|X =]
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Target of regression problem

Theorem 4.1
For any random variable Z, we have

argmin E[(Z — ¢)?] = E[Z].
ceR

Implications for regression problem:

e Conditional on X = z, the optimal prediction for Y that minimizes MSE is
f7(z) = E[Y|X = ]

e Rewrite the model

Y= E[Y|X] + Y-E[Y[X]
—— —_———
regression function mean-zero noise
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Regression problem

We will consider the regression problem in a more straightforward way:
y=["(x)+e

o x € R?is the input, y € R is the output

e ¢ is some mean-zero random noise, e.g., € ~ ./\/(0,02)

f*:R* = R is the unknown regression function

Training data: (x1,y1),. .., (Tn, yn) satisfying

yi =" (@) + e

where €1, ..., &, are i.i.d. noise with E[¢;] = 0, and
o in some cases, we assume &1, ..., &, are deterministic (fixed design)
. i.i.d. .
o sometimes we may assume that xi,...,@, ~ px (random design)

e Learn the regression function f* based on training data
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Overview

e Linear regression: model the regression function f* as a linear function
fr@)=a'p"

where we assume z includes a constant variable 1. Here 3* € R is the
unknown parameter.

e Nonparametric regression: assume that
frerF
where F is certain function class, e.g.,

o class of quadratic function
o class of convex function
o Reproducing Kernel Hilbert Space (RKHS)
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Linear regression: classical setting



Linear regression

e Linear regression:
— plA3* -
yi—CCiﬁ +&; (z—l,...,n)

where x1,...,x, are fixed design, and 1, ...,e, are i.i.d. noise satisfying
Ele;] = 0 and var(g;) = o2

e Consider matrix notation

Y =XpB +¢
where
Y1 iBI €1
Y=|: |eR", X=|:|eR™, e= eR"
Yn x,) En
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Least square estimator

e The most popular estimation method is least squares, which estimates 3*
by minimizing the residual sum of squares

> wi—=x/B8)? =Y - X3
=1

e Ordinary least squares (OLS) estimator:

B = argmin |[Y — X33
BeRd

It has minimizer R
B=(X"X)'XTY.

e Suppose the noise are i.i.d. Gaussian, then OLS is the MLE
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Theoretical properties

e Linear estimator: estimator of the form AY for some matrix A € R4x"
e OLS achieves the minimum variance among all linear unbiased estimators

o Furthermore, when the noise is i.i.d. Gaussian, OLS achieves the minimum
variance among all unbiased estimators

Theorem 4.2

e Gauss-Markov: The OLS estimator B is the best linear unbiased
estimator of 3*, i.e. for any linear and unbiased estimator (3 of 3%,

-~ ~

cov(3) =< cov(3).

e Cramér-Rao lower bound: when ey, ... e, areiid N(0,0?), the
variance of OLS matches the Cramér-Rao lower bound, i.e. for any
unbiased estimator (3 of (3%,

cov(@) = cov(8).
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Cramér-Rao lower bound

Consider X4, ..., X, be i.i.d. samples from a density fy

The unknown parameter § € ©

Let T(X1,...,X,) be any unbiased estimator for 6

Under some regularity condition,
cov(T(X1,..., X)) = [I(0)] !
where () is the Fisher information matrix

1(8) = nEx~y, [Volog fo(X)[Vglog fo(X)]T}
= —nEx~y, [Vjlog fo(X)]
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Implications

e The OLS estimator is the best one among all unbiased estimator for 8* in
terms of minimizing MSE (why?)

e [s it also the best estimator among any estimator for 3*, including those
biased ones?
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Implications

e The OLS estimator is the best one among all unbiased estimator for 8* in
terms of minimizing MSE (why?)

e [s it also the best estimator among any estimator for 3*, including those
biased ones?

— No! There are biased estimator which can achieve smaller MSE.
e Examples of biased estimator with smaller MSE:

o James-Stein estimator
o Ridge regression

— shrinkage estimators
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Shrinkage estimator



Bias-variance tradeoff

e Suppose that the unknown parameter is 3* € R?

e For any estimator ﬁ (more generally, any random vector), the mean
squared error (MSE) can be decomposed into

E[||8 - 8*|[3] = |E[B] — 8" |13 + tr(cov(B))
——

=:MSE bias variance

e For unbiased estimator (e.g., OLS), the bias is zero

e By tolerating a small amount of bias we may be able to achieve a larger
reduction in variance, thus achieving smaller MSE
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James-Stein estimator

e Consider a Gaussian sequence model,
Y =3*+¢e, e ~N(0,1I,)

which is a special linear regression by taking d =n and X = I,
e OLS / MLE: Bois =Y

e James-Stein estimator:
~ n—2
Bis = (1 - > Y
1Y]]3
Theorem 4.3

James-Stein estimator has smaller MSE than OLS whenn > 3, i.e.,

MSE(BJS) < MSE(B\OLs) for any (3*
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Implications

e By shrinking the OLS towards zero, we achieve smaller MSE
— inadmissability of OLS (or MLE)

e |t is not even necessary to shrink towards zero: for any fixed ¢ € R",

—~ p—2

e =Y - ——— (Y —
o v —eg¥ ~©

also satisfy the same property as Theorem 4.3
e Can be extended to linear regression:

(d - 2)5°

—AXTXBOLs.
X T X Bows|3

Bis = BoLs —
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Ridge regression

e Ridge regression: f-penalized least squares estimator

Bx = argmin |Y — X 8|3 + A||8])3,
Berd

where )\ is the tuning parameter.

e The ridge regression estimator admits closed-form solution:
Br=(X"X+ )XY,
It is well defined even when X T X is not invertible

e As A — 0, ridge regression recovers the OLS

e Interpretation as MAP estimator with a Gaussian prior on 3*
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MAP estimate

Consider observing X from a density fg+, where 6* € © is unknown
Frequentist’s viewpoint: 6* is fixed (though unknown)
o Likelihood function: fy(X) (a function of 6 € O)

e Estimate 6* by the maximizer of the likelihood function
— maximum likelihood estimation (MLE)

Bayesian’s viewpoint: 6 is also random
e We have a prior distribution g(#) over ©, and conditional on 8, X ~ fy

e Posterior probability of 6 after observing X:

_ a®h(X)
Jo 9(0) for (X) 0"

e Estimate 6 by the maximizer of the posterior probability
— maximum a posteriori estimation (MAP)

P(0]X) o g(0) fo(X)
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Properties of ridge regression

Ridge regression:

Br=argmin|Y — XBIZ+ N8I3 = (XTX +AI,) ' XTY.
BeRd

Theorem 4.4

There exists Ao > 0 such that ridge regression B\,\ achieves smaller MSE
than OLS estimate R R
MSE(B,) < MSE(BoLs)

for any A € (0, \o).
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Properties of ridge regression

Ridge regression:

Br=argmin|Y — XBIZ+ N8I3 = (XTX +AI,) ' XTY.
BeRd

Theorem 4.4

There exists Ao > 0 such that ridge regression B\,\ achieves smaller MSE
than OLS estimate R R
MSE(B,) < MSE(BoLs)

for any A € (0, \o).

e To prove this theorem, we need some tool from linear algebra
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Singular Value Decomposition (SVD)

For any rank-r matrix X € R™*? it can be expressed as
X=Uzv"
e U cR™" and V € R " are orthogonal matrices:
U=luy,...,u, V =[vy,..., 0],

where {u;};_; (resp. {v;}]_;) are orthonormal vectors in R™ (resp. R™)

e ¥ € R™™" is a diagonal matrix
3 =diag{o1,...,0.}

where 01 > 09 > -+ > 0, > 0 are the singular values of X
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More about SVD

For any rank-r matrix X € R"*?% with SVD X = UXV T

e Connection to eigen-decomposition

2 o |[UT
T T
XX'=UsU'=[U U] [ 0 On_J [UI]
%2 o0 |V’
Ty _ 2v,T _
X'X=v2*v' =V V] [0 Od_J [VI]
where U (resp. V) is the orthogonal complement of U (resp. V')

e The operator (spectral) norm of X
X = sup [Xalz =01
llall2=1

e The Frobenius norm of X
X3 => o7
i=1
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Implications to ridge regression

Suppose that the design matrix X has SVD UZV T

e Bias-variance decomposition
E[|8x — B%I3] = |[E[Br] — B3 + tr(cov(By))

e Bias term

d

IEBA) - 8715 = (

=1

A3; \2 -
A+BU2) where B = [V, V|8

e Variance term

d 2
cov(B GQZ(/\+O_)

=1

e This allows us to prove Theorem 4.4
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Linear regression: high-dimensional setting



What happens in high-dimension?

High-dimensional linear regression:
Y=X3" +¢

where the dimension d is much larger than the sample size n
e OLS fails because X " X is not invertible

e In general, it is not possible to say something meaningful about 8* € R¢
from n samples Y € R™ (identifibility issue)
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What happens in high-dimension?

High-dimensional linear regression:
Y=X3" +¢
where the dimension d is much larger than the sample size n

e OLS fails because X " X is not invertible

e In general, it is not possible to say something meaningful about 8* € R¢
from n samples Y € R™ (identifibility issue)

e A meaningful and workable setup: assume 3* is sparse, i.e.,

s =180 = {j: 87 # 0} <d
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Sparse linear regression

High-dimensional linear regression:
Y =X3" +¢

where d > n, but s = ||8*]|0 < d

e Genomics: only a small subset of genes is expected to be associated with
a particular trait or disease

e Finance and Economics: only a small subset of macroeconomic variables
or market signals may be relevant to stock returns or economic growth
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Insights

e Motivated by ridge regression, we may consider

arg min |Y — X 8[3 + Al|B]lo
BeR?

e lIssue: computationally hard (]| - ||o is discontinuous, non-convex...)
e Idea: use || - ||; instead
e Insights from compressed sensing (noiseless): under certain conditions

(known as restricted isometry property), 1 minimization problem

argmin||8|1 st XB=Y
BER?

has unique minimizer that coincides with the minimizer to

argmin||B|lo st. XB=Y.
BeR4
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LASSO

LASSO (Least Absolute Shrinkage and Selection Operator) estimates 3* by
solving the following convex optimization problem:

3= in Y — X835+
B = arg min | Bliz + Al

where:
o |Y — X3|3: residual sum of squares (RSS).
e |1B]1 = ;’:1 |B;|: €1-norm penalty.

e )\ > 0: tuning parameter that controls the trade-off between goodness of
fit and sparsity.

Interpretation as MAP estimator with a Laplace prior on 3*

Questions:
o How to compute LASSO estimate?
o What is the statistical properties of LASSO?
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How to compute LASSO: proximal gradient method



A more general class of convex optimization

Consider unconstrained convex optimization problem of the form

min F(x) = f(x) + h(x)

zeRd
where
e f(x): a differentiable, convex function
e h(x): a convex, potentially non-differentiable function (e.g., ¢1-norm).

e Example: LASSO can be viewed as taking
fl@)=|Y - Xpl3,  h(z) =Bl

Issue: gradient descent (GD) does not work (due to non-smoothness)
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A Proximal View of Gradient Descent

To motivate proximal gradient methods, we first revisit gradient descent
for ming, f(x), where f(-) is convex and smooth

Gradient descent update: ;11 = @ — nV f(x;)

e This is equivalent to

. 1
oesr —argmin{ f(@) + V(@2 @) + oo - wilf |
first-order approximation at ax; SN————

proximal term

Heuristics: search for ;41 that

o aim to minimize f(-) (through minimizing first-order approximation)
o remains close to x; such that first-order approximation at x; is valid
(enforced by proximal term)

e Benefit: minimizing a quadratic function, admits simple solution (i.e., GD)
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Proximal gradient method: algorithm

Consider an iterative algorithm: starting from x;, update

. , 1
Tpy1 = argmin { flxy) +(Vf(xy),  — ) +h(z) + %Hw — |2 }
first-order approximation at x; —

proximal term

e Define proximal operator
. 1 2
prox, (v) = arg min 4 h(x) + |l — v||5
zeRY 2

e If this proximal operator is easy to compute, then we can express
Ty11 = prox,, (z: — NV f(2:))

e alternates between gradient updates on f and proximal minimization on A
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Proximal gradient method: properties

Proximal gradient algorithm: for t =1,2,...
Tp1 = prox,, (e — 0V f())

e fast convergence when f is convex and L-smooth: take n = 1/L,

* L *
Flae) — F* < o llwo - a3

exponential convergence when f is u-strongly convex

lee = a*[I3 < (1= p/L)" ||lwo — 2|3

when h(x) = 0 when & € A and h(x) = oo otherwise, this gives the
projected gradient descent for minge 4 f():

T = Pale —nV [f(xe))
e Recommended reading material: Lecture 5 of the course Large-Scale
Optimization for Data Science
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Application to LASSO

e LASSO:
fB) =Y -X8l3 and  h(B)=A|BI1

e The proximal operator admits closed-form expression

.orl .
prox (v) = arg min, { 518~ vl3 + Nl | = shrinks ()

where shrinky () applies entrywise shrinkage to v towards zero:
v; — )\, if Vj Z )\,
[shrinkx(v)]; = S v; + A, ifv; < =),
0, otherwise.
e Proximal gradient algorithm for LASSO:
Bes1 = shrink,\ (B — 20X "X B, +2nX 'Y)
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Statistical properties of LASSO



Setup

LASSO:
B = arg min {31Y - X3 + Mgl }.

Independent, sub-Gaussian noise ||&;|y, < o

Sparsity: n > slogd

Theory-informed tuning parameter selection:

A=< ov/nlogd

Question:

o Does LASSO recover the support of 3*7
o Does LASSO provide reliable estimate for 3*7
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Optimality condition

The optimality condition for unconstrained convex optimization

min f(x)

xeR?
e if fis smooth: Vf(Z) =0
e in general (when f might not be smooth): 0 € 9f(Z)

Here 0f(x) C RY is the subgradient of the confex function f at :
gedf(x) < fly)>flx)+g (y—=) forall yeR

Check (in homework):

e if fissmooth at x: 9f(xz) = {Vf(x)}

e the optimality condition for LASSO is: for each 1 < j <d

= A-sign(B;) if B #0

[XT(Y—XTIB)]J {€[>\7)\] if B\j:O
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Model selection consistency

o Let S={j:j3; # 0} be the support set (nonzero coefficients) and S° be
its complement.

e Irrepresentable condition:
1 X 5 X's(X g Xs) ' BElloe < 1,

where X g and Xgc as submatrices of X with columns corresponding to
S and S¢, and 3% is the sub-vector of 3* corresponding to S

e Model Selection Consistency: If the irrepresentable condition holds,
under certain assumptions, the Lasso estimator satisfies:

P(S=S) =1 asn— oo,

where § = {j : Bj # 0}.
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Estimation guarantees

o Restricted eigenvalue condition: For any v € R? such that
lvse|lr < 3||lvs]1, the restricted eigenvalue condition is:

1
min T <7XTX)v > 0.
lolla=1,llose 1 <3llvsly  \n

This is satisfied by e.g., i.i.d. Gaussian matrix X.

e Estimation error: If the restricted eigenvalue condition holds, under
certain assumptions, the LASSO estimator satisfies:

1 ~ logd
21X (B = 8|2 < g25—2=
IX(B- B3 S 0%t

. logd
1B~ B"l1 S os
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