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From classification to regression

Classification:

• there is a joint distribution of (X, Y ) ∼ ρ where typically X ∈ Rd and
Y ∈ {1, . . . , K} is discrete

• Goal: given input x, find the label y with the highest posterior probability

arg max
y∈{1,...,K}

P
(
Y = y|X = x

)
Regression:

• there is a joint distribution of (X, Y ) ∼ ρ where X ∈ Rd and Y ∈ R

• Goal: given input x, find a prediction f(x) for Y conditional on X = x,
that minimizes MSE

E
[
(Y − f(x))2|X = x

]
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Target of regression problem

Theorem 4.1
For any random variable Z, we have

arg min
c∈R

E[(Z − c)2] = E[Z].

Implications for regression problem:

• Conditional on X = x, the optimal prediction for Y that minimizes MSE is

f⋆(x) = E[Y |X = x]

• Rewrite the model

Y = E[Y |X]︸ ︷︷ ︸
regression function

+ Y − E[Y |X]︸ ︷︷ ︸
mean-zero noise

Linear Regression 4-3



Regression problem

We will consider the regression problem in a more straightforward way:

y = f⋆(x) + ε

• x ∈ Rd is the input, y ∈ R is the output

• ε is some mean-zero random noise, e.g., ε ∼ N (0, σ2)

• f⋆ : Rd → R is the unknown regression function

• Training data: (x1, y1), . . . , (xn, yn) satisfying

yi = f⋆(xi) + εi

where ε1, . . . , εn are i.i.d. noise with E[εi] = 0, and
◦ in some cases, we assume x1, . . . ,xn are deterministic (fixed design)
◦ sometimes we may assume that x1, . . . ,xn

i.i.d.∼ ρX (random design)

• Learn the regression function f⋆ based on training data
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Overview

• Linear regression: model the regression function f⋆ as a linear function

f⋆(x) = x⊤β⋆

where we assume x includes a constant variable 1. Here β⋆ ∈ Rd is the
unknown parameter.

• Nonparametric regression: assume that

f⋆ ∈ F

where F is certain function class, e.g.,
◦ class of quadratic function
◦ class of convex function
◦ Reproducing Kernel Hilbert Space (RKHS)
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Linear regression: classical setting



Linear regression

• Linear regression:

yi = x⊤
i β

⋆ + εi (i = 1, . . . , n)

where x1, . . . ,xn are fixed design, and ε1, . . . , εn are i.i.d. noise satisfying
E[εi] = 0 and var(εi) = σ2

• Consider matrix notation
Y = Xβ⋆ + ε

where

Y =

y1
...

yn

 ∈ Rn, X =

x
⊤
1
...

x⊤
n

 ∈ Rn×d, ε =

ε1
...

εn

 ∈ Rn

Linear Regression 4-7



Least square estimator

• The most popular estimation method is least squares, which estimates β⋆

by minimizing the residual sum of squares
n∑
i=1

(yi − x⊤
i β)2 = ∥Y − Xβ∥2

2.

• Ordinary least squares (OLS) estimator:

β̂ := arg min
β∈Rd

∥Y − Xβ∥2
2

It has minimizer
β̂ = (X⊤X)−1X⊤Y .

• Suppose the noise are i.i.d. Gaussian, then OLS is the MLE
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Theoretical properties

• Linear estimator: estimator of the form AY for some matrix A ∈ Rd×n

• OLS achieves the minimum variance among all linear unbiased estimators

• Furthermore, when the noise is i.i.d. Gaussian, OLS achieves the minimum
variance among all unbiased estimators

Theorem 4.2
• Gauss-Markov: The OLS estimator β̂ is the best linear unbiased

estimator of β⋆, i.e. for any linear and unbiased estimator β̃ of β⋆,

cov(β̂) ⪯ cov(β̃).

• Cramér-Rao lower bound: when ε1, . . . , εn are i.i.d. N (0, σ2), the
variance of OLS matches the Cramér-Rao lower bound, i.e. for any
unbiased estimator β̃ of β⋆,

cov(β̂) ⪯ cov(β̃).
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Cramér-Rao lower bound

• Consider X1, . . . , Xn be i.i.d. samples from a density fθ

• The unknown parameter θ ∈ Θ

• Let T (X1, . . . , Xn) be any unbiased estimator for θ

• Under some regularity condition,

cov(T (X1, . . . , Xn)) ⪰ [I(θ)]−1

where I(θ) is the Fisher information matrix

I(θ) = nEX∼fθ

[
∇θ log fθ(X) [∇θ log fθ(X)]⊤

]
= −nEX∼fθ

[
∇2
θ log fθ(X)

]
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Implications

• The OLS estimator is the best one among all unbiased estimator for β⋆ in
terms of minimizing MSE (why?)

• Is it also the best estimator among any estimator for β⋆, including those
biased ones?

— No! There are biased estimator which can achieve smaller MSE.

• Examples of biased estimator with smaller MSE:
◦ James-Stein estimator
◦ Ridge regression

— shrinkage estimators
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Shrinkage estimator



Bias-variance tradeoff

• Suppose that the unknown parameter is β⋆ ∈ Rd

• For any estimator β̂ (more generally, any random vector), the mean
squared error (MSE) can be decomposed into

E[∥β̂ − β⋆∥2
2]︸ ︷︷ ︸

=:MSE

= ∥E[β̂ ] − β⋆∥2
2︸ ︷︷ ︸

bias

+ tr(cov(β̂))︸ ︷︷ ︸
variance

• For unbiased estimator (e.g., OLS), the bias is zero

• By tolerating a small amount of bias we may be able to achieve a larger
reduction in variance, thus achieving smaller MSE
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James-Stein estimator

• Consider a Gaussian sequence model,

Y = β⋆ + ε, ε ∼ N (0, In)

which is a special linear regression by taking d = n and X = In

• OLS / MLE: β̂OLS = Y

• James-Stein estimator:

β̂JS =
(

1 − n − 2
∥Y ∥2

2

)
Y

Theorem 4.3
James-Stein estimator has smaller MSE than OLS when n ≥ 3, i.e.,

MSE(β̂JS) < MSE(β̂OLS) for any β⋆
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Implications

• By shrinking the OLS towards zero, we achieve smaller MSE
— inadmissability of OLS (or MLE)

• It is not even necessary to shrink towards zero: for any fixed c ∈ Rn,

β̂c := Y − p − 2
∥Y − c∥2

2
(Y − c)

also satisfy the same property as Theorem 4.3

• Can be extended to linear regression:

β̂JS = β̂OLS − (d − 2)σ̂2

∥X⊤Xβ̂OLS∥2
2
X⊤Xβ̂OLS.
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Ridge regression

• Ridge regression: ℓ2-penalized least squares estimator

β̂λ = arg min
β∈Rd

∥Y − Xβ∥2
2 + λ∥β∥2

2,

where λ is the tuning parameter.

• The ridge regression estimator admits closed-form solution:

β̂λ = (X⊤X + λId)−1X⊤Y .

It is well defined even when X⊤X is not invertible

• As λ → 0, ridge regression recovers the OLS

• Interpretation as MAP estimator with a Gaussian prior on β⋆
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MAP estimate

Consider observing X from a density fθ⋆ , where θ⋆ ∈ Θ is unknown

Frequentist’s viewpoint: θ⋆ is fixed (though unknown)

• Likelihood function: fθ(X) (a function of θ ∈ Θ)

• Estimate θ⋆ by the maximizer of the likelihood function
— maximum likelihood estimation (MLE)

Bayesian’s viewpoint: θ is also random

• We have a prior distribution g(θ) over Θ, and conditional on θ, X ∼ fθ

• Posterior probability of θ after observing X:

P(θ|X) = g(θ)fθ(X)∫
Θ g(θ′)fθ′(X)dθ′ ∝ g(θ)fθ(X)

• Estimate θ by the maximizer of the posterior probability
— maximum a posteriori estimation (MAP)
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Properties of ridge regression

Ridge regression:

β̂λ = arg min
β∈Rd

∥Y − Xβ∥2
2 + λ∥β∥2

2 = (X⊤X + λId)−1X⊤Y .

Theorem 4.4

There exists λ0 > 0 such that ridge regression β̂λ achieves smaller MSE
than OLS estimate

MSE(β̂λ) < MSE(β̂OLS)

for any λ ∈ (0, λ0].

• To prove this theorem, we need some tool from linear algebra
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Singular Value Decomposition (SVD)

For any rank-r matrix X ∈ Rn×d, it can be expressed as

X = UΣV ⊤

• U ∈ Rn×r and V ∈ Rd×r are orthogonal matrices:

U = [u1, . . . ,ur], V = [v1, . . . ,vr],

where {ui}ri=1 (resp. {vi}ri=1) are orthonormal vectors in Rm (resp. Rn)

• Σ ∈ Rr×r is a diagonal matrix

Σ = diag{σ1, . . . , σr}

where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values of X
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More about SVD

For any rank-r matrix X ∈ Rn×d with SVD X = UΣV ⊤

• Connection to eigen-decomposition

XX⊤ = UΣ2U⊤ =
[
U U⊥

] [
Σ2 0
0 0n−r

] [
U⊤

U⊤
⊥

]
X⊤X = V Σ2V ⊤ =

[
V V⊥

] [
Σ2 0
0 0d−r

] [
V ⊤

V ⊤
⊥

]
where U⊥ (resp. V⊥) is the orthogonal complement of U (resp. V )

• The operator (spectral) norm of X

∥X∥ = sup
∥a∥2=1

∥Xa∥2 = σ1

• The Frobenius norm of X

∥X∥2
F =

r∑
i=1

σ2
i
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Implications to ridge regression

Suppose that the design matrix X has SVD UΣV ⊤

• Bias-variance decomposition

E[∥β̂λ − β⋆∥2
2] = ∥E[β̂λ ] − β⋆∥2

2 + tr(cov(β̂λ))

• Bias term

∥E[β̂λ ] − β⋆∥2
2 =

d∑
i=1

( λβ̃i
λ + σ2

i

)2
where β̃ = [V ,V⊥]⊤β⋆

• Variance term

cov(β̂λ) = σ2
d∑
i=1

( σi
λ + σ2

i

)2

• This allows us to prove Theorem 4.4
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Linear regression: high-dimensional setting



What happens in high-dimension?

High-dimensional linear regression:

Y = Xβ⋆ + ε

where the dimension d is much larger than the sample size n

• OLS fails because X⊤X is not invertible

• In general, it is not possible to say something meaningful about β⋆ ∈ Rd
from n samples Y ∈ Rn (identifibility issue)

• A meaningful and workable setup: assume β⋆ is sparse, i.e.,

s := ∥β⋆∥0 ≡ |{j : β⋆j ̸= 0}| ≪ d
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Sparse linear regression

High-dimensional linear regression:

Y = Xβ⋆ + ε

where d ≥ n, but s = ∥β⋆∥0 ≪ d

• Genomics: only a small subset of genes is expected to be associated with
a particular trait or disease

• Finance and Economics: only a small subset of macroeconomic variables
or market signals may be relevant to stock returns or economic growth

• · · · · · ·
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Insights

• Motivated by ridge regression, we may consider

arg min
β∈Rd

∥Y − Xβ∥2
2 + λ∥β∥0

• Issue: computationally hard (∥ · ∥0 is discontinuous, non-convex...)

• Idea: use ∥ · ∥1 instead

• Insights from compressed sensing (noiseless): under certain conditions
(known as restricted isometry property), ℓ1 minimization problem

arg min
β∈Rd

∥β∥1 s.t. Xβ = Y

has unique minimizer that coincides with the minimizer to

arg min
β∈Rd

∥β∥0 s.t. Xβ = Y .
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LASSO

LASSO (Least Absolute Shrinkage and Selection Operator) estimates β⋆ by
solving the following convex optimization problem:

β̂ = arg min
β∈Rd

∥Y − Xβ∥2
2 + λ∥β∥1,

where:

• ∥Y − Xβ∥2
2: residual sum of squares (RSS).

• ∥β∥1 =
∑p
j=1 |βj |: ℓ1-norm penalty.

• λ > 0: tuning parameter that controls the trade-off between goodness of
fit and sparsity.

• Interpretation as MAP estimator with a Laplace prior on β⋆

• Questions:
◦ How to compute LASSO estimate?
◦ What is the statistical properties of LASSO?
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How to compute LASSO: proximal gradient method



A more general class of convex optimization

Consider unconstrained convex optimization problem of the form

min
x∈Rd

F (x) := f(x) + h(x)

where

• f(x): a differentiable, convex function

• h(x): a convex, potentially non-differentiable function (e.g., ℓ1-norm).

• Example: LASSO can be viewed as taking

f(x) = ∥Y − Xβ∥2
2, h(x) = λ∥β∥1.

Issue: gradient descent (GD) does not work (due to non-smoothness)
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A Proximal View of Gradient Descent

• To motivate proximal gradient methods, we first revisit gradient descent
for minx f(x), where f(·) is convex and smooth

• Gradient descent update: xt+1 = xt − η∇f(xt)

• This is equivalent to

xt+1 = arg min
x

{
f(xt) + ⟨∇f(xt),x − xt⟩︸ ︷︷ ︸

first-order approximation at xt

+ 1
2η

∥x − xt∥2
2︸ ︷︷ ︸

proximal term

}

• Heuristics: search for xt+1 that
◦ aim to minimize f(·) (through minimizing first-order approximation)
◦ remains close to xt such that first-order approximation at xt is valid

(enforced by proximal term)

• Benefit: minimizing a quadratic function, admits simple solution (i.e., GD)
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Proximal gradient method: algorithm

Consider an iterative algorithm: starting from xt, update

xt+1 = arg min
x

{
f(xt) + ⟨∇f(xt),x − xt⟩︸ ︷︷ ︸

first-order approximation at xt

+ h(x) + 1
2η

∥x − xt∥2
2︸ ︷︷ ︸

proximal term

}

• Define proximal operator

proxh(v) = arg min
x∈Rd

{
h(x) + 1

2∥x − v∥2
2

}
• If this proximal operator is easy to compute, then we can express

xt+1 = proxηh(xt − η∇f(xt))

• alternates between gradient updates on f and proximal minimization on h
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Proximal gradient method: properties

Proximal gradient algorithm: for t = 1, 2, . . .

xt+1 = proxηh(xt − η∇f(xt))

• fast convergence when f is convex and L-smooth: take η = 1/L,

F (xt) − F ⋆ ≤ L

2t
∥x0 − x⋆∥2

2

• exponential convergence when f is µ-strongly convex

∥xt − x⋆∥2
2 ≤ (1 − µ/L)t∥x0 − x⋆∥2

2

• when h(x) = 0 when x ∈ A and h(x) = ∞ otherwise, this gives the
projected gradient descent for minx∈A f(x):

xt+1 = PA(xt − η∇f(xt))
• Recommended reading material: Lecture 5 of the course Large-Scale

Optimization for Data Science
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Application to LASSO

• LASSO:
f(β) = ∥Y − Xβ∥2

2 and h(β) = λ∥β∥1

• The proximal operator admits closed-form expression

proxh(v) = arg min
β∈Rd

{1
2∥β − v∥2

2 + λ∥β∥1

}
= shrinkλ(v)

where shrinkλ(·) applies entrywise shrinkage to v towards zero:

[shrinkλ(v)]j =


vj − λ, if vj ≥ λ,

vj + λ, if vj ≤ −λ,

0, otherwise.

• Proximal gradient algorithm for LASSO:

βt+1 = shrinkηλ
(
βt − 2ηX⊤Xβt + 2ηX⊤Y

)
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Statistical properties of LASSO



Setup

LASSO:
β̂ = arg min

β∈Rd

{1
2∥Y − Xβ∥2

2 + λ∥β∥1

}
,

• Independent, sub-Gaussian noise ∥εi∥ψ2 ≤ σ

• Sparsity: n ≫ s log d

• Theory-informed tuning parameter selection:

λ ≍ σ
√

n log d

• Question:
◦ Does LASSO recover the support of β⋆?
◦ Does LASSO provide reliable estimate for β⋆?
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Optimality condition
The optimality condition for unconstrained convex optimization

min
x∈Rd

f(x)

• if f is smooth: ∇f(x̂) = 0

• in general (when f might not be smooth): 0 ∈ ∂f(x̂)

Here ∂f(x) ⊆ Rd is the subgradient of the confex function f at x:

g ∈ ∂f(x) ⇐⇒ f(y) ≥ f(x) + g⊤(y − x) for all y ∈ Rd

Check (in homework):

• if f is smooth at x: ∂f(x) = {∇f(x)}

• the optimality condition for LASSO is: for each 1 ≤ j ≤ d

[
X⊤(Y − X⊤β̂)

]
j

{
= λ · sign(β̂j) if β̂j ̸= 0
∈ [−λ, λ] if β̂j = 0
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Model selection consistency

• Let S = {j : β⋆j ̸= 0} be the support set (nonzero coefficients) and Sc be
its complement.

• Irrepresentable condition:

∥X⊤
ScXS(X⊤

S XS)−1β⋆S∥∞ < 1,

where XS and XSc as submatrices of X with columns corresponding to
S and Sc, and β⋆S is the sub-vector of β⋆ corresponding to S

• Model Selection Consistency: If the irrepresentable condition holds,
under certain assumptions, the Lasso estimator satisfies:

P(Ŝ = S) → 1 as n → ∞,

where Ŝ = {j : β̂j ̸= 0}.

Linear Regression 4-36



Estimation guarantees

• Restricted eigenvalue condition: For any v ∈ Rp such that
∥vSc∥1 ≤ 3∥vS∥1, the restricted eigenvalue condition is:

min
∥v∥2=1,∥vSc ∥1≤3∥vS∥1

v⊤
( 1

n
X⊤X

)
v > 0.

This is satisfied by e.g., i.i.d. Gaussian matrix X.

• Estimation error: If the restricted eigenvalue condition holds, under
certain assumptions, the LASSO estimator satisfies:

1
n

∥X(β̂ − β⋆)∥2
2 ≲ σ2s

log d

n
,

and

∥β̂ − β⋆∥1 ≲ σs

√
log d

n
.
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