STAT 615: Statistical Learning

Linear Regression

Yuling Yan

University of Wisconsin-Madison, Fall 2024

Classification:

- there is a joint distribution of $(X,Y)\sim\rho$ where typically $X\in\mathbb{R}^d$ and $Y\in\{1,\ldots,K\}$ is discrete
- Goal: given input x, find the label y with the highest posterior probability

$$\underset{y \in \{1, \dots, K\}}{\operatorname{arg\,max}} \mathbb{P}(Y = y | X = x)$$

Regression:

- there is a joint distribution of $(X,Y)\sim\rho$ where $X\in\mathbb{R}^d$ and $Y\in\mathbb{R}$
- Goal: given input x, find a prediction f(x) for Y conditional on X=x, that minimizes MSE

$$\mathbb{E}\left[(Y - f(x))^2 | X = x\right]$$

Target of regression problem

Theorem 4.1

For any random variable Z, we have

$$\underset{c \in \mathbb{R}}{\operatorname{arg\,min}} \mathbb{E}[(Z-c)^2] = \mathbb{E}[Z].$$

Implications for regression problem:

• Conditional on X = x, the optimal prediction for Y that minimizes MSE is

$$f^{\star}(x) = \mathbb{E}[Y|X = x]$$

• Rewrite the model

We will consider the regression problem in a more straightforward way:

$$y = f^{\star}(\boldsymbol{x}) + \varepsilon$$

- $oldsymbol{x} \in \mathbb{R}^d$ is the input, $y \in \mathbb{R}$ is the output
- + ε is some mean-zero random noise, e.g., $\varepsilon \sim \mathcal{N}(0,\sigma^2)$
- $f^\star: \mathbb{R}^d \rightarrow \mathbb{R}$ is the $\mathit{unknown}$ regression function
- Training data: $({m x}_1,y_1),\ldots,({m x}_n,y_n)$ satisfying

$$y_i = f^\star(\boldsymbol{x}_i) + \varepsilon_i$$

where $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. noise with $\mathbb{E}[\varepsilon_i] = 0$, and

• in some cases, we assume x_1, \ldots, x_n are deterministic (fixed design)

- \circ sometimes we may assume that $m{x}_1,\ldots,m{x}_n \overset{ ext{i.i.d.}}{\sim}
 ho_X$ (random design)
- Learn the regression function f^{\star} based on training data

Linear Regression

• Linear regression: model the regression function f^{\star} as a linear function

$$f^{\star}(\boldsymbol{x}) = \boldsymbol{x}^{\top} \boldsymbol{\beta}^{\star}$$

where we assume x includes a constant variable 1. Here $\beta^* \in \mathbb{R}^d$ is the unknown parameter.

• Nonparametric regression: assume that

$$f^{\star} \in \mathcal{F}$$

where \mathcal{F} is certain function class, e.g.,

- $\circ~$ class of quadratic function
- $\circ~$ class of convex function
- Reproducing Kernel Hilbert Space (RKHS)

Linear regression: classical setting

• Linear regression:

$$y_i = \boldsymbol{x}_i^\top \boldsymbol{\beta}^\star + \varepsilon_i \quad (i = 1, \dots, n)$$

where x_1, \ldots, x_n are fixed design, and $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. noise satisfying $\mathbb{E}[\varepsilon_i] = 0$ and $\operatorname{var}(\varepsilon_i) = \sigma^2$

• Consider matrix notation

$$Y = Xeta^\star + arepsilon$$

where

$$oldsymbol{Y} = egin{bmatrix} y_1 \ dots \ y_n \end{bmatrix} \in \mathbb{R}^n, \quad oldsymbol{X} = egin{bmatrix} oldsymbol{x}_1^\top \ dots \ oldsymbol{x}_n^\top \end{bmatrix} \in \mathbb{R}^{n imes d}, \quad oldsymbol{arepsilon} = egin{bmatrix} arepsilon_1 \ dots \ arepsilon_n \end{bmatrix} \in \mathbb{R}^n$$

• The most popular estimation method is *least squares*, which estimates β^* by minimizing the residual sum of squares

$$\sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2 = \|\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}\|_2^2.$$

• Ordinary least squares (OLS) estimator:

$$\widehat{oldsymbol{eta}}\coloneqq rgmin_{oldsymbol{eta}\in\mathbb{R}^d} \|oldsymbol{Y}-oldsymbol{X}oldsymbol{eta}\|_2^2$$

It has minimizer

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}.$$

• Suppose the noise are i.i.d. Gaussian, then OLS is the MLE

Theoretical properties

- Linear estimator: estimator of the form $oldsymbol{A}oldsymbol{Y}$ for some matrix $oldsymbol{A}\in\mathbb{R}^{d imes n}$
- OLS achieves the minimum variance among all linear unbiased estimators
- Furthermore, when the noise is i.i.d. Gaussian, OLS achieves the minimum variance among all unbiased estimators

Theorem 4.2

 Gauss-Markov: The OLS estimator β̂ is the best linear unbiased estimator of β^{*}, i.e. for any linear and unbiased estimator β̂ of β^{*},

$$\operatorname{cov}(\widehat{\boldsymbol{eta}}) \preceq \operatorname{cov}(\widetilde{\boldsymbol{eta}}).$$

Cramér-Rao lower bound: when ε₁,..., ε_n are i.i.d. N(0, σ²), the variance of OLS matches the Cramér-Rao lower bound, i.e. for any unbiased estimator β of β*,

$$\operatorname{cov}(\widehat{\boldsymbol{eta}}) \preceq \operatorname{cov}(\widetilde{\boldsymbol{eta}}).$$

- Consider X_1, \ldots, X_n be i.i.d. samples from a density f_{θ}
- The unknown parameter $\theta\in\Theta$
- Let $T(X_1,\ldots,X_n)$ be any unbiased estimator for heta
- Under some regularity condition,

$$\operatorname{cov}(T(X_1,\ldots,X_n)) \succeq [I(\theta)]^{-1}$$

where $I(\boldsymbol{\theta})$ is the Fisher information matrix

$$I(\theta) = n \mathbb{E}_{X \sim f_{\theta}} \left[\nabla_{\theta} \log f_{\theta}(X) \left[\nabla_{\theta} \log f_{\theta}(X) \right]^{\top} \right]$$

= $-n \mathbb{E}_{X \sim f_{\theta}} \left[\nabla_{\theta}^{2} \log f_{\theta}(X) \right]$

- The OLS estimator is the best one among all unbiased estimator for β^{\star} in terms of minimizing MSE (why?)
- Is it also the best estimator among any estimator for $\beta^\star,$ including those biased ones?

- The OLS estimator is the best one among all unbiased estimator for β^* in terms of minimizing MSE (why?)
- Is it also the best estimator among any estimator for β^* , including those biased ones?

- No! There are biased estimator which can achieve smaller MSE.

- The OLS estimator is the best one among all unbiased estimator for β^* in terms of minimizing MSE (why?)
- Is it also the best estimator among any estimator for β^* , including those biased ones?

- No! There are biased estimator which can achieve smaller MSE.

- Examples of biased estimator with smaller MSE:
 - James-Stein estimator
 - Ridge regression

— shrinkage estimators

Shrinkage estimator

- Suppose that the unknown parameter is ${oldsymbol{eta}}^\star \in \mathbb{R}^d$
- For any estimator $\widehat{\beta}$ (more generally, any random vector), the mean squared error (MSE) can be decomposed into

$$\underbrace{\mathbb{E}[\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star}\|_{2}^{2}]}_{=:\mathsf{MSE}} = \underbrace{\|\mathbb{E}[\widehat{\boldsymbol{\beta}}] - \boldsymbol{\beta}^{\star}\|_{2}^{2}}_{\mathsf{bias}} + \underbrace{\mathsf{tr}(\mathsf{cov}(\widehat{\boldsymbol{\beta}}))}_{\mathsf{variance}}$$

- For unbiased estimator (e.g., OLS), the bias is zero
- By tolerating a small amount of bias we may be able to achieve a larger reduction in variance, thus achieving smaller MSE

• Consider a Gaussian sequence model,

$$\boldsymbol{Y} = \boldsymbol{\beta}^{\star} + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$$

which is a special linear regression by taking d = n and $\boldsymbol{X} = \boldsymbol{I}_n$

- OLS / MLE: $\widehat{\boldsymbol{\beta}}_{\mathsf{OLS}} = \boldsymbol{Y}$
- James-Stein estimator:

$$\widehat{\boldsymbol{eta}}_{\mathsf{JS}} = \left(1 - rac{n-2}{\|\boldsymbol{Y}\|_2^2}
ight) \boldsymbol{Y}$$

Theorem 4.3

James-Stein estimator has smaller MSE than OLS when $n \ge 3$, i.e.,

$$\mathsf{MSE}(\widehat{\boldsymbol{\beta}}_{\mathsf{JS}}) < \mathsf{MSE}(\widehat{\boldsymbol{\beta}}_{\mathsf{OLS}}) \quad \textit{for any} \quad \boldsymbol{\beta}^{\star}$$

Implications

 $\bullet\,$ By shrinking the OLS towards zero, we achieve smaller MSE

— inadmissability of OLS (or MLE)

• It is not even necessary to shrink towards zero: for any fixed $c\in\mathbb{R}^n$,

$$\widehat{\boldsymbol{\beta}}_{\boldsymbol{c}} \coloneqq \boldsymbol{Y} - \frac{p-2}{\|\boldsymbol{Y} - \boldsymbol{c}\|_2^2} (\boldsymbol{Y} - \boldsymbol{c})$$

also satisfy the same property as Theorem 4.3

• Can be extended to linear regression:

$$\widehat{\boldsymbol{\beta}}_{\mathsf{JS}} = \widehat{\boldsymbol{\beta}}_{\mathsf{OLS}} - \frac{(d-2)\widehat{\sigma}^2}{\|\boldsymbol{X}^\top\boldsymbol{X}\widehat{\boldsymbol{\beta}}_{\mathsf{OLS}}\|_2^2} \boldsymbol{X}^\top\boldsymbol{X}\widehat{\boldsymbol{\beta}}_{\mathsf{OLS}}.$$

• Ridge regression: ℓ_2 -penalized least squares estimator

$$\widehat{oldsymbol{eta}}_{\lambda} = \operatorname*{arg\,min}_{oldsymbol{eta} \in \mathbb{R}^d} \|oldsymbol{Y} - oldsymbol{X}oldsymbol{eta}\|_2^2 + \lambda \|oldsymbol{eta}\|_2^2,$$

where λ is the tuning parameter.

• The ridge regression estimator admits closed-form solution:

$$\widehat{\boldsymbol{\beta}}_{\lambda} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_d)^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y}.$$

It is well defined even when $X^{ op}X$ is not invertible

- As $\lambda \to 0$, ridge regression recovers the OLS
- Interpretation as MAP estimator with a Gaussian prior on eta^\star

Consider observing X from a density $f_{\theta^\star},$ where $\theta^\star\in\Theta$ is unknown

Frequentist's viewpoint: θ^* is fixed (though unknown)

- Likelihood function: $f_{\theta}(X)$ (a function of $\theta \in \Theta$)
- Estimate θ^{\star} by the maximizer of the likelihood function

- maximum likelihood estimation (MLE)

Bayesian's viewpoint: θ is also random

- We have a prior distribution $g(\theta)$ over Θ , and conditional on θ , $X \sim f_{\theta}$
- Posterior probability of θ after observing X:

$$\mathbb{P}(\theta|X) = \frac{g(\theta)f_{\theta}(X)}{\int_{\Theta} g(\theta')f_{\theta'}(X)\mathrm{d}\theta'} \propto g(\theta)f_{\theta}(X)$$

• Estimate $\boldsymbol{\theta}$ by the maximizer of the posterior probability

— maximum a posteriori estimation (MAP)

Ridge regression:

$$\widehat{\boldsymbol{\beta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^d} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2 = (\boldsymbol{X}^\top \boldsymbol{X} + \lambda \boldsymbol{I}_d)^{-1} \boldsymbol{X}^\top \boldsymbol{Y}.$$

Theorem 4.4

There exists $\lambda_0 > 0$ such that ridge regression $\hat{\beta}_{\lambda}$ achieves smaller MSE than OLS estimate

 $\mathsf{MSE}(\widehat{\boldsymbol{\beta}}_{\lambda}) < \mathsf{MSE}(\widehat{\boldsymbol{\beta}}_{\mathsf{OLS}})$

for any $\lambda \in (0, \lambda_0]$.

Ridge regression:

$$\widehat{\boldsymbol{\beta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^d} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2 = (\boldsymbol{X}^\top \boldsymbol{X} + \lambda \boldsymbol{I}_d)^{-1} \boldsymbol{X}^\top \boldsymbol{Y}.$$

Theorem 4.4

There exists $\lambda_0 > 0$ such that ridge regression $\hat{\beta}_{\lambda}$ achieves smaller MSE than OLS estimate

$$\mathsf{MSE}(\boldsymbol{\beta}_{\lambda}) < \mathsf{MSE}(\boldsymbol{\beta}_{\mathsf{OLS}})$$

for any $\lambda \in (0, \lambda_0]$.

• To prove this theorem, we need some tool from linear algebra

For any rank-r matrix $oldsymbol{X} \in \mathbb{R}^{n imes d}$, it can be expressed as

 $X = U \Sigma V^{ op}$

• $oldsymbol{U} \in \mathbb{R}^{n imes r}$ and $oldsymbol{V} \in \mathbb{R}^{d imes r}$ are orthogonal matrices:

$$\boldsymbol{U} = [\boldsymbol{u}_1, \dots, \boldsymbol{u}_r], \qquad \boldsymbol{V} = [\boldsymbol{v}_1, \dots, \boldsymbol{v}_r],$$

where $\{u_i\}_{i=1}^r$ (resp. $\{v_i\}_{i=1}^r$) are orthonormal vectors in \mathbb{R}^m (resp. \mathbb{R}^n) • $\Sigma \in \mathbb{R}^{r \times r}$ is a diagonal matrix

$$\Sigma = \mathsf{diag}\{\sigma_1, \ldots, \sigma_r\}$$

where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ are the singular values of X

For any rank-r matrix $oldsymbol{X} \in \mathbb{R}^{n imes d}$ with SVD $oldsymbol{X} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^ op$

• Connection to eigen-decomposition

$$egin{aligned} & oldsymbol{X}oldsymbol{X}^{ op} = oldsymbol{U}\Sigma^2oldsymbol{U}^{ op} = egin{bmatrix} & oldsymbol{U}_{oldsymbol{oldsymbol{L}}} & oldsymbol{U}_{oldsymbol{oldsymbol{L}}} & oldsymbol{0} & oldsymbol{0}_{n-r} \end{bmatrix} egin{bmatrix} & oldsymbol{U}^{ op} \ & oldsymbol{U}_{oldsymbol{oldsymbol{L}}} & oldsymbol{U}_{oldsymbol{oldsymbol{U}}} & oldsymbol{U}_{oldsymbol{oldsymbol{U}}} & oldsymbol{U}_{oldsymbol{oldsymbol{U}}} & oldsymbol{U}_{oldsymbol{oldsymbol{U}}} & oldsymbol{U}_{oldsymbol{oldsymbol{L}}} & oldsymbol{U}_{oldsymbol{oldsymbol{U}}} & oldsymbol{U}_{oldsymbol{U}} & o$$

where U_{\perp} (resp. V_{\perp}) is the orthogonal complement of U (resp. V)

• The operator (spectral) norm of X

$$\|X\| = \sup_{\|a\|_2=1} \|Xa\|_2 = \sigma_1$$

• The Frobenius norm of \boldsymbol{X}

$$\|\boldsymbol{X}\|_{\mathrm{F}}^2 = \sum_{i=1}^r \sigma_i^2$$

Suppose that the design matrix X has SVD $U\Sigma V^ op$

• Bias-variance decomposition

$$\mathbb{E}[\|\widehat{\beta}_{\lambda} - \beta^{\star}\|_{2}^{2}] = \|\mathbb{E}[\widehat{\beta}_{\lambda}] - \beta^{\star}\|_{2}^{2} + \mathrm{tr}(\mathrm{cov}(\widehat{\beta}_{\lambda}))$$

• Bias term

$$\|\mathbb{E}[\widehat{\boldsymbol{\beta}}_{\lambda}] - \boldsymbol{\beta}^{\star}\|_{2}^{2} = \sum_{i=1}^{d} \left(\frac{\lambda \widetilde{\beta}_{i}}{\lambda + \sigma_{i}^{2}}\right)^{2} \quad \text{where} \quad \widetilde{\boldsymbol{\beta}} = [\boldsymbol{V}, \boldsymbol{V}_{\perp}]^{\top} \boldsymbol{\beta}^{\star}$$

• Variance term

$$\operatorname{cov}(\widehat{\boldsymbol{\beta}}_{\lambda}) = \sigma^2 \sum_{i=1}^d \left(\frac{\sigma_i}{\lambda + \sigma_i^2}\right)^2$$

• This allows us to prove Theorem 4.4

Linear Regression

Linear regression: high-dimensional setting

High-dimensional linear regression:

$$Y = Xeta^\star + arepsilon$$

where the dimension \boldsymbol{d} is much larger than the sample size \boldsymbol{n}

- OLS fails because $X^{ op}X$ is not invertible
- In general, it is not possible to say something meaningful about $\beta^* \in \mathbb{R}^d$ from n samples $Y \in \mathbb{R}^n$ (identifibility issue)

High-dimensional linear regression:

$$oldsymbol{Y} = oldsymbol{X}oldsymbol{eta}^\star + arepsilon$$

where the dimension \boldsymbol{d} is much larger than the sample size \boldsymbol{n}

- OLS fails because $X^{ op}X$ is not invertible
- In general, it is not possible to say something meaningful about $\beta^* \in \mathbb{R}^d$ from n samples $Y \in \mathbb{R}^n$ (identifibility issue)
- A meaningful and workable setup: assume β^{\star} is sparse, i.e.,

$$s\coloneqq \|\boldsymbol{\beta}^\star\|_0\equiv |\{j:\beta_j^\star\neq 0\}|\ll d$$

High-dimensional linear regression:

$$Y = X eta^\star + arepsilon$$

where $d \ge n$, but $s = \| \boldsymbol{\beta}^{\star} \|_0 \ll d$

- **Genomics:** only a small subset of genes is expected to be associated with a particular trait or disease
- Finance and Economics: only a small subset of macroeconomic variables or market signals may be relevant to stock returns or economic growth

• • • • • • •

• Motivated by ridge regression, we may consider

$$\arg\min_{\boldsymbol{\beta}\in\mathbb{R}^d}\|\boldsymbol{Y}-\boldsymbol{X}\boldsymbol{\beta}\|_2^2+\lambda\|\boldsymbol{\beta}\|_0$$

- Issue: computationally hard ($\|\cdot\|_0$ is discontinuous, non-convex...)
- Idea: use $\|\cdot\|_1$ instead
- Insights from compressed sensing (noiseless): under certain conditions (known as restricted isometry property), ℓ_1 minimization problem

$$rgmin_{oldsymbol{eta} \in \mathbb{R}^d} \|oldsymbol{eta}\|_1 \quad ext{s.t.} \quad oldsymbol{X}oldsymbol{eta} = oldsymbol{Y}$$

has unique minimizer that coincides with the minimizer to

$$rgmin_{oldsymbol{eta}\in\mathbb{R}^d} \|oldsymbol{eta}\|_0 \quad ext{s.t.} \quad oldsymbol{X}oldsymbol{eta}=oldsymbol{Y}.$$

LASSO

LASSO (Least Absolute Shrinkage and Selection Operator) estimates β^* by solving the following convex optimization problem:

$$\widehat{oldsymbol{eta}} = rg\min_{oldsymbol{eta} \in \mathbb{R}^d} \|oldsymbol{Y} - oldsymbol{X}oldsymbol{eta}\|_2^2 + \lambda \|oldsymbol{eta}\|_1,$$

where:

- $\|\boldsymbol{Y} \boldsymbol{X}\boldsymbol{\beta}\|_2^2$: residual sum of squares (RSS).
- $\|\boldsymbol{\beta}\|_1 = \sum_{j=1}^p |\beta_j|$: ℓ_1 -norm penalty.
- $\lambda > 0$: tuning parameter that controls the trade-off between goodness of fit and sparsity.
- Interpretation as MAP estimator with a Laplace prior on eta^\star
- Questions:
 - How to compute LASSO estimate?
 - $\circ~$ What is the statistical properties of LASSO?

How to compute LASSO: proximal gradient method

Consider unconstrained convex optimization problem of the form

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} F(\boldsymbol{x}) \coloneqq f(\boldsymbol{x}) + h(\boldsymbol{x})$$

where

- $f(\boldsymbol{x})$: a differentiable, convex function
- h(x): a convex, potentially non-differentiable function (e.g., ℓ_1 -norm).
- Example: LASSO can be viewed as taking

$$f(\boldsymbol{x}) = \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2, \qquad h(\boldsymbol{x}) = \lambda \|\boldsymbol{\beta}\|_1.$$

Issue: gradient descent (GD) does not work (due to non-smoothness)

A Proximal View of Gradient Descent

- To motivate proximal gradient methods, we first revisit gradient descent for $\min_{x} f(x)$, where $f(\cdot)$ is convex and smooth
- Gradient descent update: $oldsymbol{x}_{t+1} = oldsymbol{x}_t \eta
 abla f(oldsymbol{x}_t)$
- This is equivalent to

$$\boldsymbol{x}_{t+1} = \arg\min_{\boldsymbol{x}} \left\{ \underbrace{f(\boldsymbol{x}_t) + \langle \nabla f(\boldsymbol{x}_t), \boldsymbol{x} - \boldsymbol{x}_t \rangle}_{\text{first-order approximation at } \boldsymbol{x}_t} + \underbrace{\frac{1}{2\eta} \|\boldsymbol{x} - \boldsymbol{x}_t\|_2^2}_{\text{proximal term}} \right\}$$

- Heuristics: search for $oldsymbol{x}_{t+1}$ that
 - \circ aim to minimize $f(\cdot)$ (through minimizing first-order approximation)
 - \circ remains close to x_t such that first-order approximation at x_t is valid (enforced by proximal term)
- Benefit: minimizing a quadratic function, admits simple solution (i.e., GD)

Proximal gradient method: algorithm

Consider an iterative algorithm: starting from $oldsymbol{x}_t$, update

$$\boldsymbol{x}_{t+1} = \arg\min_{\boldsymbol{x}} \left\{ \underbrace{f(\boldsymbol{x}_t) + \langle \nabla f(\boldsymbol{x}_t), \boldsymbol{x} - \boldsymbol{x}_t \rangle}_{\text{first-order approximation at } \boldsymbol{x}_t} + \frac{h(\boldsymbol{x})}{h(\boldsymbol{x})} + \underbrace{\frac{1}{2\eta} \|\boldsymbol{x} - \boldsymbol{x}_t\|_2^2}_{\text{proximal term}} \right\}$$

• Define proximal operator

$$\mathsf{prox}_h(\boldsymbol{v}) = \arg\min_{\boldsymbol{x}\in\mathbb{R}^d} \left\{h(\boldsymbol{x}) + \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{v}\|_2^2\right\}$$

• If this proximal operator is easy to compute, then we can express

$$\boldsymbol{x}_{t+1} = \operatorname{prox}_{\eta h}(\boldsymbol{x}_t - \eta \nabla f(\boldsymbol{x}_t))$$

- alternates between gradient updates on f and proximal minimization on \boldsymbol{h}

Proximal gradient algorithm: for t = 1, 2, ...

$$\boldsymbol{x}_{t+1} = \operatorname{prox}_{\eta h}(\boldsymbol{x}_t - \eta \nabla f(\boldsymbol{x}_t))$$

• fast convergence when f is convex and L-smooth: take $\eta=1/L,$

$$F(\boldsymbol{x}_t) - F^{\star} \leq \frac{L}{2t} \|\boldsymbol{x}_0 - \boldsymbol{x}^{\star}\|_2^2$$

- exponential convergence when f is $\mu\text{-strongly convex}$

$$\|\boldsymbol{x}_t - \boldsymbol{x}^{\star}\|_2^2 \le (1 - \mu/L)^t \|\boldsymbol{x}_0 - \boldsymbol{x}^{\star}\|_2^2$$

• when h(x) = 0 when $x \in A$ and $h(x) = \infty$ otherwise, this gives the projected gradient descent for $\min_{x \in A} f(x)$:

$$\boldsymbol{x}_{t+1} = \mathcal{P}_{\mathcal{A}}(\boldsymbol{x}_t - \eta \nabla f(\boldsymbol{x}_t))$$

• Recommended reading material: Lecture 5 of the course Large-Scale Optimization for Data Science

Application to LASSO

• LASSO:

$$f(\boldsymbol{\beta}) = \| \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2$$
 and $h(\boldsymbol{\beta}) = \lambda \| \boldsymbol{\beta} \|_1$

• The proximal operator admits closed-form expression

$$\mathsf{prox}_{h}(\boldsymbol{v}) = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^{d}} \left\{ \frac{1}{2} \|\boldsymbol{\beta} - \boldsymbol{v}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{1} \right\} = \mathsf{shrink}_{\lambda}(\boldsymbol{v})$$

where shrink $_{\lambda}(\cdot)$ applies entrywise shrinkage to v towards zero:

$$[\mathsf{shrink}_{\lambda}(\boldsymbol{v})]_{j} = \begin{cases} v_{j} - \lambda, & \text{if } v_{j} \geq \lambda, \\ v_{j} + \lambda, & \text{if } v_{j} \leq -\lambda, \\ 0, & \text{otherwise.} \end{cases}$$

• Proximal gradient algorithm for LASSO:

$$\boldsymbol{\beta}_{t+1} = \mathsf{shrink}_{\eta\lambda} \left(\boldsymbol{\beta}_t - 2\eta \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{\beta}_t + 2\eta \boldsymbol{X}^\top \boldsymbol{Y} \right)$$

Statistical properties of LASSO

LASSO:

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \Big\{ \frac{1}{2} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1 \Big\},\$$

- Independent, sub-Gaussian noise $\|\varepsilon_i\|_{\psi_2} \leq \sigma$
- Sparsity: $n \gg s \log d$
- Theory-informed tuning parameter selection:

$$\lambda \asymp \sigma \sqrt{n \log d}$$

- Question:
 - Does LASSO recover the support of β^* ?
 - Does LASSO provide reliable estimate for β^* ?

Optimality condition

The optimality condition for unconstrained convex optimization

 $\min_{\pmb{x} \in \mathbb{R}^d} f(\pmb{x})$

- if f is smooth: $\nabla f(\widehat{\boldsymbol{x}}) = \boldsymbol{0}$
- in general (when f might not be smooth): $\mathbf{0} \in \partial f(\widehat{\boldsymbol{x}})$

Here $\partial f(x) \subseteq \mathbb{R}^d$ is the **subgradient** of the confex function f at x:

$$oldsymbol{g}\in\partial f(oldsymbol{x})\quad\Longleftrightarrow\quad f(oldsymbol{y})\geq f(oldsymbol{x})+oldsymbol{g}^{ op}(oldsymbol{y}-oldsymbol{x})\quad ext{for all}\quadoldsymbol{y}\in\mathbb{R}^d$$

Check (in homework):

- if f is smooth at $\pmb{x} {:}~ \partial f(\pmb{x}) = \{\nabla f(\pmb{x})\}$
- the optimality condition for LASSO is: for each $1 \leq j \leq d$

$$\begin{bmatrix} \boldsymbol{X}^{\top} (\boldsymbol{Y} - \boldsymbol{X}^{\top} \widehat{\boldsymbol{\beta}}) \end{bmatrix}_{j} \quad \begin{cases} = \lambda \cdot \operatorname{sign}(\widehat{\beta}_{j}) & \text{if} \quad \widehat{\beta}_{j} \neq 0 \\ \in [-\lambda, \lambda] & \text{if} \quad \widehat{\beta}_{j} = 0 \end{cases}$$

- Let $S=\{j:\beta_j^\star\neq 0\}$ be the support set (nonzero coefficients) and $S^{\rm c}$ be its complement.
- Irrepresentable condition:

$$\|\boldsymbol{X}_{S^c}^{\top}\boldsymbol{X}_S(\boldsymbol{X}_S^{\top}\boldsymbol{X}_S)^{-1}\boldsymbol{\beta}_S^{\star}\|_{\infty} < 1,$$

where X_S and X_{S^c} as submatrices of X with columns corresponding to S and β_S^c , and β_S^{\star} is the sub-vector of β^{\star} corresponding to S

• Model Selection Consistency: If the irrepresentable condition holds, under certain assumptions, the Lasso estimator satisfies:

$$\mathbb{P}(\widehat{S}=S) \to 1 \quad \text{as } n \to \infty,$$

where $\widehat{S} = \{j : \widehat{\beta}_j \neq 0\}.$

• Restricted eigenvalue condition: For any $v \in \mathbb{R}^p$ such that $\|v_{S^c}\|_1 \leq 3\|v_S\|_1$, the restricted eigenvalue condition is:

$$\min_{\|\boldsymbol{v}\|_2=1, \|\boldsymbol{v}_{S^c}\|_1 \leq 3 \|\boldsymbol{v}_S\|_1} \boldsymbol{v}^\top \Big(\frac{1}{n} \boldsymbol{X}^\top \boldsymbol{X}\Big) \boldsymbol{v} > 0.$$

This is satisfied by e.g., i.i.d. Gaussian matrix X.

• Estimation error: If the restricted eigenvalue condition holds, under certain assumptions, the LASSO estimator satisfies:

$$\frac{1}{n} \|\boldsymbol{X}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star})\|_{2}^{2} \lesssim \sigma^{2} s \frac{\log d}{n},$$

and

$$\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star}\|_1 \lesssim \sigma s \sqrt{\frac{\log d}{n}}.$$

Model selection:

- Peng Zhao, and Bin Yu. "On model selection consistency of Lasso." The Journal of Machine Learning Research 7 (2006): 2541-2563.
- Martin J. Wainwright. "Sharp thresholds for High-Dimensional and noisy sparsity recovery using l₁-Constrained Quadratic Programming (Lasso)." IEEE transactions on information theory 55.5 (2009): 2183-2202.

Estimation error bounds:

• Peter J. Bickel, Ya'acov Ritov, and Alexandre B. Tsybakov. "Simultaneous analysis of Lasso and Dantzig selector." Annals of Statistics 37.4 (2009): 1705-1732.