Regression

Yuling Yan
University of Wisconsin–Madison, Spring 2025

From classification to regression

Classification:

- there is a joint distribution of $(X,Y)\sim \rho$ where typically $X\in\mathbb{R}^d$ and $Y\in\{1,\ldots,K\}$ is discrete
- ullet Goal: given input x, find the label y with the highest posterior probability

$$\underset{y \in \{1, \dots, K\}}{\operatorname{arg\,max}} \mathbb{P}(Y = y | X = x)$$

Regression:

- there is a joint distribution of $(X,Y)\sim \rho$ where $X\in \mathbb{R}^d$ and $Y\in \mathbb{R}$
- Goal: given input x, find a prediction f(x) for Y conditional on X=x, that minimizes MSE

$$\mathbb{E}[(Y - f(x))^2 | X = x]$$

Target of regression problem

Theorem 4.1

For any random variable Z, we have

$$\operatorname*{arg\,min}_{c \in \mathbb{R}} \mathbb{E}[(Z - c)^2] = \mathbb{E}[Z].$$

Implications for regression problem:

• Conditional on X=x, the optimal prediction for Y that minimizes MSE is

$$f^{\star}(x) = \mathbb{E}[Y|X=x]$$

Rewrite the model

$$Y = \underbrace{\mathbb{E}[Y|X]}_{\text{regression function}} + \underbrace{Y - \mathbb{E}[Y|X]}_{\text{mean-zero noise}}$$

Regression problem

We will consider the regression problem in a more straightforward way:

$$y = f^{\star}(\boldsymbol{x}) + \varepsilon$$

- ullet $x\in\mathbb{R}^d$ is the input, $y\in\mathbb{R}$ is the output
- ε is some mean-zero random noise, e.g., $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- ullet $f^\star:\mathbb{R}^d o \mathbb{R}$ is the *unknown* regression function
- Training data: $(x_1, y_1), \ldots, (x_n, y_n)$ satisfying

$$y_i = f^{\star}(\boldsymbol{x}_i) + \varepsilon_i$$

where $\varepsilon_1,\ldots,\varepsilon_n$ are i.i.d. noise with $\mathbb{E}[\varepsilon_i]=0$, and

- \circ in some cases, we assume x_1, \ldots, x_n are deterministic (fixed design)
- \circ sometimes we may assume that $x_1,\ldots,x_n\stackrel{\mathsf{i.i.d.}}{\sim}
 ho_X$ (random design)
- ullet Learn the regression function f^{\star} based on training data

Overview

ullet Linear regression: model the regression function f^\star as a linear function

$$f^{\star}(\boldsymbol{x}) = \boldsymbol{x}^{\top} \boldsymbol{\beta}^{\star}$$

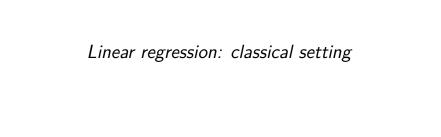
where we assume x includes a constant variable 1. Here $\beta^\star \in \mathbb{R}^d$ is the unknown parameter.

• Nonparametric regression: assume that

$$f^{\star} \in \mathcal{F}$$

where \mathcal{F} is certain function class, e.g.,

- o class of quadratic function
- class of convex function
- Reproducing Kernel Hilbert Space (RKHS)



Linear regression

Linear regression:

$$y_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}^{\star} + \varepsilon_i \quad (i = 1, \dots, n)$$

where x_1,\ldots,x_n are fixed design, and $\varepsilon_1,\ldots,\varepsilon_n$ are i.i.d. noise satisfying $\mathbb{E}[\varepsilon_i]=0$ and $\mathrm{var}(\varepsilon_i)=\sigma^2$

• Consider matrix notation

$$Y = X\beta^{\star} + \varepsilon$$

where

$$oldsymbol{Y} = egin{bmatrix} y_1 \ dots \ y_n \end{bmatrix} \in \mathbb{R}^n, \quad oldsymbol{X} = egin{bmatrix} oldsymbol{x}_1^ op \ dots \ oldsymbol{x}_n^ op \end{bmatrix} \in \mathbb{R}^{n imes d}, \quad oldsymbol{arepsilon} = egin{bmatrix} arepsilon_1 \ dots \ oldsymbol{arepsilon} \ dots \ oldsymbol{x} \end{bmatrix} \in \mathbb{R}^n$$

Least square estimator

• The most popular estimation method is *least squares*, which estimates β^* by minimizing the residual sum of squares

$$\sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2 = \|\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}\|_2^2.$$

• Ordinary least squares (OLS) estimator:

$$\widehat{oldsymbol{eta}}\coloneqq rg\min_{oldsymbol{eta}\in\mathbb{R}^d} \|oldsymbol{Y}-oldsymbol{X}oldsymbol{eta}\|_2^2$$

It has minimizer

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}.$$

• Suppose the noise are i.i.d. Gaussian, then OLS is the MLE

Theoretical properties

- ullet Linear estimator: estimator of the form $oldsymbol{A}oldsymbol{Y}$ for some matrix $oldsymbol{A} \in \mathbb{R}^{d imes n}$
- OLS achieves the minimum variance among all linear unbiased estimators
- Furthermore, when the noise is i.i.d. Gaussian, OLS achieves the minimum variance among all unbiased estimators

Theorem 4.2

• Gauss-Markov: The OLS estimator $\widehat{\beta}$ is the best linear unbiased estimator of β^* , i.e. for any linear and unbiased estimator $\widetilde{\beta}$ of β^* ,

$$\operatorname{cov}(\widehat{\boldsymbol{\beta}}) \preceq \operatorname{cov}(\widetilde{\boldsymbol{\beta}}).$$

• Cramér-Rao lower bound: when $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. $\mathcal{N}(0, \sigma^2)$, the variance of OLS matches the Cramér-Rao lower bound, i.e. for any unbiased estimator $\widetilde{\beta}$ of β^* ,

$$\operatorname{cov}(\widehat{\boldsymbol{\beta}}) \preceq \operatorname{cov}(\widetilde{\boldsymbol{\beta}}).$$

Cramér-Rao lower bound

- Consider X_1, \ldots, X_n be i.i.d. samples from a density f_{θ}
- The unknown parameter $\theta \in \Theta$
- Let $T(X_1,\ldots,X_n)$ be any unbiased estimator for θ
- Under some regularity condition,

$$\operatorname{cov}(T(X_1,\ldots,X_n))\succeq [I(\theta)]^{-1}$$

where $I(\theta)$ is the **Fisher information matrix**

$$I(\theta) = n \mathbb{E}_{X \sim f_{\theta}} \left[\nabla_{\theta} \log f_{\theta}(X) \left[\nabla_{\theta} \log f_{\theta}(X) \right]^{\top} \right]$$

= $-n \mathbb{E}_{X \sim f_{\theta}} \left[\nabla_{\theta}^{2} \log f_{\theta}(X) \right]$

- The OLS estimator is the best one among all unbiased estimator for β^* in terms of minimizing MSE (why?)
- Is it also the best estimator among any estimator for β^{\star} , including those biased ones?

- The OLS estimator is the best one among all unbiased estimator for β^* in terms of minimizing MSE (why?)
- Is it also the best estimator among any estimator for β^{\star} , including those biased ones?

— No! There are biased estimator which can achieve smaller MSE.

- The OLS estimator is the best one among all unbiased estimator for β^* in terms of minimizing MSE (why?)
- Is it also the best estimator among any estimator for β^* , including those biased ones?
 - No! There are biased estimator which can achieve smaller MSE.
- Examples of biased estimator with smaller MSE:
 - James-Stein estimator
 - o Ridge regression

— shrinkage estimators

Bias-variance tradeoff

- ullet Suppose that the unknown parameter is $oldsymbol{eta}^\star \in \mathbb{R}^d$
- For any estimator $\widehat{\beta}$ (more generally, any random vector), the mean squared error (MSE) can be decomposed into

$$\underbrace{\mathbb{E}[\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^\star\|_2^2]}_{=:\mathsf{MSE}} = \underbrace{\|\mathbb{E}[\widehat{\boldsymbol{\beta}}\,] - \boldsymbol{\beta}^\star\|_2^2}_{\mathsf{bias}} + \underbrace{\mathsf{tr}(\mathsf{cov}(\widehat{\boldsymbol{\beta}}))}_{\mathsf{variance}}$$

- For unbiased estimator (e.g., OLS), the bias is zero
- By tolerating a small amount of bias we may be able to achieve a larger reduction in variance, thus achieving smaller MSE

James-Stein estimator

Consider a Gaussian sequence model,

$$oldsymbol{Y} = oldsymbol{eta}^\star + oldsymbol{arepsilon}, \qquad oldsymbol{arepsilon} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I}_n)$$

which is a special linear regression by taking d=n and $oldsymbol{X}=oldsymbol{I}_n$

- OLS / MLE: $\widehat{\boldsymbol{\beta}}_{\mathsf{OLS}} = \boldsymbol{Y}$
- James-Stein estimator:

$$\widehat{oldsymbol{eta}}_{\mathsf{JS}} = \left(1 - rac{n-2}{\|oldsymbol{Y}\|_2^2}
ight)oldsymbol{Y}$$

Theorem 4.3

James-Stein estimator has smaller MSE than OLS when $n \geq 3$, i.e.,

$$\mathsf{MSE}(\widehat{\boldsymbol{\beta}}_\mathsf{JS}) < \mathsf{MSE}(\widehat{\boldsymbol{\beta}}_\mathsf{OLS})$$
 for any $\boldsymbol{\beta}^\star$

By shrinking the OLS towards zero, we achieve smaller MSE

— inadmissability of OLS (or MLE)

ullet It is not even necessary to shrink towards zero: for any fixed $c\in\mathbb{R}^n$,

$$\widehat{\boldsymbol{\beta}}_{oldsymbol{c}}\coloneqq oldsymbol{Y} - rac{p-2}{\|oldsymbol{Y} - oldsymbol{c}\|_2^2} (oldsymbol{Y} - oldsymbol{c})$$

also satisfy the same property as Theorem 4.3

• Can be extended to linear regression:

$$\widehat{\boldsymbol{\beta}}_{\mathsf{JS}} = \widehat{\boldsymbol{\beta}}_{\mathsf{OLS}} - \frac{(d-2)\widehat{\sigma}^2}{\|\boldsymbol{X}^{\top}\boldsymbol{X}\widehat{\boldsymbol{\beta}}_{\mathsf{OLS}}\|_2^2} \boldsymbol{X}^{\top}\boldsymbol{X}\widehat{\boldsymbol{\beta}}_{\mathsf{OLS}}.$$

Ridge regression

• Ridge regression: ℓ_2 -penalized least squares estimator

$$\widehat{\boldsymbol{\beta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^d} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2,$$

where λ is the tuning parameter.

• The ridge regression estimator admits closed-form solution:

$$\widehat{\boldsymbol{\beta}}_{\lambda} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_d)^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}.$$

It is well defined even when $X^{ op}X$ is not invertible

- As $\lambda \to 0$, ridge regression recovers the OLS
- ullet Interpretation as MAP estimator with a Gaussian prior on eta^\star

MAP estimate

Consider observing X from a density f_{θ^*} , where $\theta^* \in \Theta$ is unknown

Frequentist's viewpoint: θ^* is fixed (though unknown)

- Likelihood function: $f_{\theta}(X)$ (a function of $\theta \in \Theta$)
- ullet Estimate $heta^{\star}$ by the maximizer of the likelihood function

— maximum likelihood estimation (MLE)

Bayesian's viewpoint: θ is also random

- We have a prior distribution $g(\theta)$ over Θ , and conditional on θ , $X \sim f_{\theta}$
- Posterior probability of θ after observing X:

$$\mathbb{P}(\theta|X) = \frac{g(\theta)f_{\theta}(X)}{\int_{\Theta} g(\theta')f_{\theta'}(X)d\theta'} \propto g(\theta)f_{\theta}(X)$$

 \bullet Estimate θ by the maximizer of the posterior probability

— maximum a posteriori estimation (MAP)

Properties of ridge regression

Ridge regression:

$$\widehat{\boldsymbol{\beta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^d} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2 = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_d)^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y}.$$

Theorem 4.4

There exists $\lambda_0>0$ such that ridge regression $\widehat{\boldsymbol{\beta}}_\lambda$ achieves smaller MSE than OLS estimate

$$\mathsf{MSE}(\widehat{oldsymbol{eta}}_{\lambda}) < \mathsf{MSE}(\widehat{oldsymbol{eta}}_{\mathsf{OLS}})$$

for any $\lambda \in (0, \lambda_0]$.

Properties of ridge regression

Ridge regression:

$$\widehat{\boldsymbol{\beta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^d} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2 = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_d)^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y}.$$

Theorem 4.4

There exists $\lambda_0 > 0$ such that ridge regression $\widehat{\beta}_{\lambda}$ achieves smaller MSE than OLS estimate

$$\mathsf{MSE}(\widehat{\boldsymbol{\beta}}_{\lambda}) < \mathsf{MSE}(\widehat{\boldsymbol{\beta}}_{\mathsf{OLS}})$$

for any $\lambda \in (0, \lambda_0]$.

• To prove this theorem, we need some tool from linear algebra

Singular Value Decomposition (SVD)

For any rank-r matrix $X \in \mathbb{R}^{n \times d}$, it can be expressed as

$$X = U\Sigma V^{\top}$$

• $U \in \mathbb{R}^{n \times r}$ and $V \in \mathbb{R}^{d \times r}$ are orthogonal matrices:

$$oldsymbol{U} = [oldsymbol{u}_1, \dots, oldsymbol{u}_r], \qquad oldsymbol{V} = [oldsymbol{v}_1, \dots, oldsymbol{v}_r],$$

where $\{u_i\}_{i=1}^r$ (resp. $\{v_i\}_{i=1}^r$) are orthonormal vectors in \mathbb{R}^m (resp. \mathbb{R}^n)

• $\Sigma \in \mathbb{R}^{r \times r}$ is a diagonal matrix

$$\Sigma = \mathsf{diag}\{\sigma_1, \ldots, \sigma_r\}$$

where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ are the singular values of \boldsymbol{X}

More about SVD

For any rank-r matrix $oldsymbol{X} \in \mathbb{R}^{n imes d}$ with SVD $oldsymbol{X} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^ op$

• Connection to eigen-decomposition

$$egin{aligned} m{X}m{X}^ op &= m{U}m{\Sigma}^2m{U}^ op &= egin{bmatrix} m{U} & m{U}_ot \end{bmatrix}m{iggl[m{\Sigma}^2 & m{0} \ m{0} & m{0}_{n-r} \end{bmatrix}m{iggl[m{U}_ot^ op \ m{U}_ot^ op \end{bmatrix}} \ m{X}^ op m{X} &= m{V}m{\Sigma}^2m{V}^ op &= m{iggl[m{V}^ op \ m{0} & m{0}_{d-r} \end{bmatrix}m{iggl[m{V}^ op \ m{V}_ot^ op \end{bmatrix}} \end{aligned}$$

where U_{\perp} (resp. V_{\perp}) is the orthogonal complement of U (resp. V)

ullet The operator (spectral) norm of X

$$\|X\| = \sup_{\|a\|_2=1} \|Xa\|_2 = \sigma_1$$

ullet The Frobenius norm of X

$$\|\boldsymbol{X}\|_{\mathrm{F}}^2 = \sum_{i=1}^r \sigma_i^2$$

Regression

Implications to ridge regression

Suppose that the design matrix X has SVD $U\Sigma V^{ op}$

• Bias-variance decomposition

$$\mathbb{E}[\|\widehat{\boldsymbol{\beta}}_{\lambda} - \boldsymbol{\beta}^{\star}\|_2^2] = \|\mathbb{E}[\widehat{\boldsymbol{\beta}}_{\lambda}\,] - \boldsymbol{\beta}^{\star}\|_2^2 + \mathrm{tr}(\mathrm{cov}(\widehat{\boldsymbol{\beta}}_{\lambda}))$$

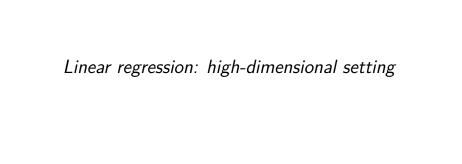
Bias term

$$\|\mathbb{E}[\widehat{m{eta}}_{\lambda}\,] - m{eta}^{\star}\|_2^2 = \sum_{i=1}^d \left(rac{\lambda\widetilde{m{eta}}_i}{\lambda + \sigma_i^2}
ight)^2 \quad ext{where} \quad \widetilde{m{eta}} = [m{V}, m{V}_{\!ot}]^{ op} m{eta}^{\star}$$

• Variance term

$$\mathsf{cov}(\widehat{oldsymbol{eta}}_\lambda) = \sigma^2 \sum_{i=1}^d \left(rac{\sigma_i}{\lambda + \sigma_i^2}
ight)^2$$

• This allows us to prove Theorem 4.4



What happens in high-dimension?

High-dimensional linear regression:

$$Y = X eta^\star + arepsilon$$

where the dimension d is much larger than the sample size n

- OLS fails because $X^{T}X$ is not invertible
- In general, it is not possible to say something meaningful about $\beta^* \in \mathbb{R}^d$ from n samples $Y \in \mathbb{R}^n$ (identifibility issue)

What happens in high-dimension?

High-dimensional linear regression:

$$Y = X\beta^{\star} + \varepsilon$$

where the dimension d is much larger than the sample size n

- OLS fails because $X^{T}X$ is not invertible
- In general, it is not possible to say something meaningful about $\beta^* \in \mathbb{R}^d$ from n samples $Y \in \mathbb{R}^n$ (identifibility issue)
- A meaningful and workable setup: assume β^* is sparse, i.e.,

$$s \coloneqq \|\boldsymbol{\beta}^{\star}\|_{0} \equiv |\{j : \beta_{j}^{\star} \neq 0\}| \ll d$$

Sparse linear regression

High-dimensional linear regression:

$$Y = X\beta^{\star} + \varepsilon$$

where $d \geq n$, but $s = \|\boldsymbol{\beta}^{\star}\|_{0} \ll d$

- **Genomics:** only a small subset of genes is expected to be associated with a particular trait or disease
- Finance and Economics: only a small subset of macroeconomic variables or market signals may be relevant to stock returns or economic growth

•

Insights

Motivated by ridge regression, we may consider

$$\arg\min_{oldsymbol{eta} \in \mathbb{R}^d} \|oldsymbol{Y} - oldsymbol{X}oldsymbol{eta}\|_2^2 + \lambda \|oldsymbol{eta}\|_0$$

- Issue: computationally hard ($\|\cdot\|_0$ is discontinuous, non-convex...)
- Idea: use $\|\cdot\|_1$ instead
- Insights from compressed sensing (noiseless): under certain conditions (known as restricted isometry property), ℓ_1 minimization problem

$$rg \min_{oldsymbol{eta} \in \mathbb{R}^d} \|oldsymbol{eta}\|_1 \quad \mathsf{s.t.} \quad oldsymbol{X}oldsymbol{eta} = oldsymbol{Y}$$

has unique minimizer that coincides with the minimizer to

$$rg \min_{oldsymbol{eta} \in \mathbb{R}^d} \|oldsymbol{eta}\|_0 \quad \text{s.t.} \quad oldsymbol{X}oldsymbol{eta} = oldsymbol{Y}.$$

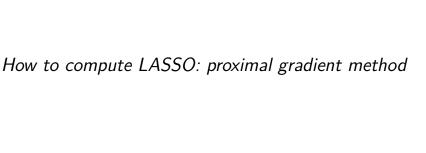
LASSO

LASSO (Least Absolute Shrinkage and Selection Operator) estimates β^* by solving the following convex optimization problem:

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1,$$

where:

- $\|Y X\beta\|_2^2$: residual sum of squares (RSS).
- $\|\beta\|_1 = \sum_{j=1}^p |\beta_j|$: ℓ_1 -norm penalty.
- λ > 0: tuning parameter that controls the trade-off between goodness of fit and sparsity.
- ullet Interpretation as MAP estimator with a Laplace prior on eta^{\star}
- Questions:
 - o How to compute LASSO estimate?
 - What is the statistical properties of LASSO?



A more general class of convex optimization

Consider unconstrained convex optimization problem of the form

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} F(\boldsymbol{x}) \coloneqq f(\boldsymbol{x}) + h(\boldsymbol{x})$$

where

- f(x): a differentiable, convex function
- h(x): a convex, potentially non-differentiable function (e.g., ℓ_1 -norm).
- Example: LASSO can be viewed as taking

$$f(x) = ||Y - X\beta||_2^2, \quad h(x) = \lambda ||\beta||_1.$$

Issue: gradient descent (GD) does not work (due to non-smoothness)

A Proximal View of Gradient Descent

- To motivate proximal gradient methods, we first revisit gradient descent for $\min_{x} f(x)$, where $f(\cdot)$ is convex and smooth
- Gradient descent update: $x_{t+1} = x_t \eta \nabla f(x_t)$
- This is equivalent to

$$oldsymbol{x}_{t+1} = rg\min_{oldsymbol{x}} \left\{ \underbrace{f(oldsymbol{x}_t) + \langle
abla f(oldsymbol{x}_t), oldsymbol{x} - oldsymbol{x}_t
angle}_{ ext{first-order approximation at } oldsymbol{x}_t} + \underbrace{\frac{1}{2\eta} \|oldsymbol{x} - oldsymbol{x}_t\|_2^2}_{ ext{proximal term}}
ight\}$$

- Heuristics: search for x_{t+1} that
 - \circ aim to minimize $f(\cdot)$ (through minimizing first-order approximation)
 - \circ remains close to x_t such that first-order approximation at x_t is valid (enforced by proximal term)

• Benefit: minimizing a quadratic function, admits simple solution (i.e., GD)

Proximal gradient method: algorithm

Consider an iterative algorithm: starting from x_t , update

$$\boldsymbol{x}_{t+1} = \arg\min_{\boldsymbol{x}} \left\{ \underbrace{f(\boldsymbol{x}_t) + \langle \nabla f(\boldsymbol{x}_t), \boldsymbol{x} - \boldsymbol{x}_t \rangle}_{\text{first-order approximation at } \boldsymbol{x}_t} + \underbrace{\frac{1}{2\eta} \|\boldsymbol{x} - \boldsymbol{x}_t\|_2^2}_{\text{proximal term}} \right\}$$

• Define proximal operator

$$\mathsf{prox}_h(\boldsymbol{v}) = \arg\min_{\boldsymbol{x} \in \mathbb{R}^d} \left\{ h(\boldsymbol{x}) + \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{v}\|_2^2 \right\}$$

• If this proximal operator is easy to compute, then we can express

$$\boldsymbol{x}_{t+1} = \mathsf{prox}_{nh}(\boldsymbol{x}_t - \eta \nabla f(\boldsymbol{x}_t))$$

ullet alternates between gradient updates on f and proximal minimization on h

Proximal gradient method: properties

Proximal gradient algorithm: for t = 1, 2, ...

$$oldsymbol{x}_{t+1} = \mathsf{prox}_{\eta h}(oldsymbol{x}_t - \eta
abla f(oldsymbol{x}_t))$$

• fast convergence when f is convex and L-smooth: take $\eta = 1/L$,

$$F(x_t) - F^* \le \frac{L}{2t} ||x_0 - x^*||_2^2$$

• exponential convergence when f is μ -strongly convex

$$\|\boldsymbol{x}_t - \boldsymbol{x}^{\star}\|_2^2 \le (1 - \mu/L)^t \|\boldsymbol{x}_0 - \boldsymbol{x}^{\star}\|_2^2$$

• when h(x) = 0 when $x \in \mathcal{A}$ and $h(x) = \infty$ otherwise, this gives the projected gradient descent for $\min_{x \in \mathcal{A}} f(x)$:

$$\boldsymbol{x}_{t+1} = \mathcal{P}_{\mathcal{A}}(\boldsymbol{x}_t - \eta \nabla f(\boldsymbol{x}_t))$$

 Recommended reading material: Lecture 5 of the course Large-Scale Optimization for Data Science

Application to LASSO

LASSO:

$$f(\boldsymbol{\beta}) = \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2$$
 and $h(\boldsymbol{\beta}) = \lambda \|\boldsymbol{\beta}\|_1$

• The proximal operator admits closed-form expression

$$\mathsf{prox}_h(\boldsymbol{v}) = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \left\{ \frac{1}{2} \|\boldsymbol{\beta} - \boldsymbol{v}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1 \right\} = \mathsf{shrink}_{\lambda}(\boldsymbol{v})$$

where shrink $_{\lambda}(\cdot)$ applies entrywise shrinkage to v towards zero:

$$[\mathsf{shrink}_{\lambda}(\boldsymbol{v})]_j = \begin{cases} v_j - \lambda, & \text{if } v_j \geq \lambda, \\ v_j + \lambda, & \text{if } v_j \leq -\lambda, \\ 0, & \text{otherwise.} \end{cases}$$

Proximal gradient algorithm for LASSO:

$$oldsymbol{eta}_{t+1} = \mathsf{shrink}_{\eta\lambda} ig(oldsymbol{eta}_t - 2\eta oldsymbol{X}^ op oldsymbol{X} oldsymbol{eta}_t + 2\eta oldsymbol{X}^ op oldsymbol{Y} ig)$$

Statistical properties of LASSO

Setup

LASSO:

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \left\{ \frac{1}{2} \| \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + \lambda \| \boldsymbol{\beta} \|_1 \right\},$$

- Independent, sub-Gaussian noise $\|\varepsilon_i\|_{\psi_2} \leq \sigma$
- Sparsity: $n \gg s \log d$
- Theory-informed tuning parameter selection:

$$\lambda \simeq \sigma \sqrt{n \log d}$$

- Question:
 - Does LASSO recover the support of β^* ?
 - Does LASSO provide reliable estimate for β^* ?

Optimality condition

The optimality condition for unconstrained convex optimization

$$\min_{oldsymbol{x} \in \mathbb{R}^d} f(oldsymbol{x})$$

- if f is smooth: $\nabla f(\widehat{x}) = \mathbf{0}$
- in general (when f might not be smooth): $\mathbf{0} \in \partial f(\widehat{x})$

Here $\partial f(x) \subseteq \mathbb{R}^d$ is the **subgradient** of the confex function f at x:

$$m{g} \in \partial f(m{x}) \quad \Longleftrightarrow \quad f(m{y}) \geq f(m{x}) + m{g}^{ op}(m{y} - m{x}) \quad \text{for all} \quad m{y} \in \mathbb{R}^d$$

Check (in homework):

- if f is smooth at x: $\partial f(x) = {\nabla f(x)}$
- ullet the optimality condition for LASSO is: for each $1 \leq j \leq d$

$$\begin{bmatrix} \boldsymbol{X}^{\top} (\boldsymbol{Y} - \boldsymbol{X}^{\top} \widehat{\boldsymbol{\beta}}) \end{bmatrix}_{j} \quad \begin{cases} = \lambda \cdot \operatorname{sign}(\widehat{\beta}_{j}) & \text{if} \quad \widehat{\beta}_{j} \neq 0 \\ \in [-\lambda, \lambda] & \text{if} \quad \widehat{\beta}_{j} = 0 \end{cases}$$

Model selection consistency

- Let $S=\{j: \beta_j^\star \neq 0\}$ be the support set (nonzero coefficients) and S^c be its complement.
- Irrepresentable condition:

$$\|\boldsymbol{X}_{S^c}^{\top}\boldsymbol{X}_S(\boldsymbol{X}_S^{\top}\boldsymbol{X}_S)^{-1}\boldsymbol{\beta}_S^{\star}\|_{\infty} < 1,$$

where X_S and X_{S^c} as submatrices of X with columns corresponding to S and S^c , and β_S^c is the sub-vector of β^* corresponding to S

 Model Selection Consistency: If the irrepresentable condition holds, under certain assumptions, the Lasso estimator satisfies:

$$\mathbb{P}(\widehat{S} = S) \to 1 \quad \text{as } n \to \infty,$$

where $\widehat{S} = \{j : \widehat{\beta}_j \neq 0\}.$

Estimation guarantees

• Restricted eigenvalue condition: For any $v \in \mathbb{R}^p$ such that $\|v_{S^c}\|_1 \leq 3\|v_S\|_1$, the restricted eigenvalue condition is:

$$\min_{\|\boldsymbol{v}\|_2=1, \|\boldsymbol{v}_{S^c}\|_1 \leq 3\|\boldsymbol{v}_S\|_1} \boldsymbol{v}^\top \Big(\frac{1}{n} \boldsymbol{X}^\top \boldsymbol{X}\Big) \boldsymbol{v} > 0.$$

This is satisfied by e.g., i.i.d. Gaussian matrix X.

• **Estimation error:** If the restricted eigenvalue condition holds, under certain assumptions, the LASSO estimator satisfies:

$$\frac{1}{n} \|\boldsymbol{X}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star})\|_{2}^{2} \lesssim \sigma^{2} s \frac{\log d}{n},$$

and

$$\|\widehat{\boldsymbol{\beta}} - {\boldsymbol{\beta}}^{\star}\|_1 \lesssim \sigma s \sqrt{\frac{\log d}{n}}.$$

Reference

Model selection:

- Peng Zhao, and Bin Yu. "On model selection consistency of Lasso." The Journal of Machine Learning Research 7 (2006): 2541-2563.
- Martin J. Wainwright. "Sharp thresholds for High-Dimensional and noisy sparsity recovery using ℓ_1 -Constrained Quadratic Programming (Lasso)." IEEE transactions on information theory 55.5 (2009): 2183-2202.

Estimation error bounds:

 Peter J. Bickel, Ya'acov Ritov, and Alexandre B. Tsybakov.
 "Simultaneous analysis of Lasso and Dantzig selector." Annals of Statistics 37.4 (2009): 1705-1732.

Nonparametric regression

Setup: we have data $(\boldsymbol{x}_1,y_1),\ldots,(\boldsymbol{x}_n,y_n)$ satisfying

$$y_i = f^{\star}(\boldsymbol{x}_i) + \varepsilon_i$$

- unknown $f^* \in \mathcal{F}$ where \mathcal{F} is certain function class
- i.i.d. Gaussian noise $\varepsilon_1, \dots, \varepsilon_n \sim \mathcal{N}(0, \sigma^2)$
- ullet fixed design $(x_1,\ldots,x_n$ are fixed) or random design $(x_1,\ldots,x_n\stackrel{\mathsf{i.i.d.}}{\sim}
 ho)$

Goal: estimate f^* using the data

Error metric: for any estimator f, consider squared L_2 norm

$$\begin{split} \|f-f^\star\|_n^2 &\coloneqq \frac{1}{n} \sum_{i=1}^n \left(f(\boldsymbol{x}_i) - f^\star(\boldsymbol{x}_i) \right)^2 \qquad \text{(for fixed design)} \\ \|f-f^\star\|_\rho^2 &\coloneqq \mathbb{E}_{\boldsymbol{x} \sim \rho} \big[(f(\boldsymbol{x}) - f^\star(\boldsymbol{x}))^2 \big] \qquad \text{(for random design)} \end{split}$$

Nonparametric least squares

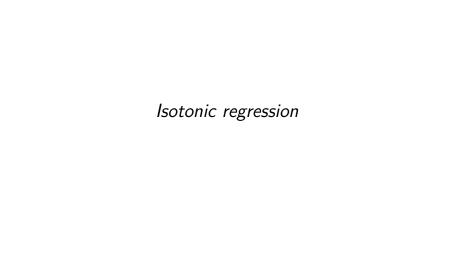
Least squares estimate:

$$\widehat{f} := \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \sum_{i=1}^{n} (f(\boldsymbol{x}_i) - y_i)^2$$

- ullet this estimator depends on ${\mathcal F}$
- computational: how to compute this least squares estimate?
- statistical: what is the convergence rate of \widehat{f} ?

Our plan: focus on \mathcal{F} that leads to *computationally feasible* estimate

- isotonic regression: $\mathcal{F} = \{\text{monotone function in } \mathbb{R} \}$
- convex regression: $\mathcal{F} = \{\text{convex function in } \mathbb{R}^d\}$
- **kernel ridge regression:** $\mathcal{F} = \text{reproducing kernel hilbert space (RKHS)}$



Isotonic regression: setup

- **Setup:** \mathcal{F} is the set of increasing (or decreasing) function in \mathbb{R}
- Suppose without loss of generality that $x_1 < x_2 < \cdots < x_n$
- **Key observation:** $f^*(x)$ is only identifible for $x \in \{x_1, \dots, x_n\}$
- Equivalent formulation:
 - o Unknown parameters: $f_1^\star \le f_2^\star \le \cdots \le f_n^\star$ (corresponds to $f^\star(x_1), \ldots, f^\star(x_n)$)
 - Observations: one sample per parameter

$$y_i = f_i^{\star} + \varepsilon_i \quad (i = 1, \dots, n)$$

 \circ Goal: estimate $f_1^\star \leq f_2^\star \leq \cdots \leq f_n^\star$

Isotonic regression: setup

- **Setup:** \mathcal{F} is the set of increasing (or decreasing) function in \mathbb{R}
- Suppose without loss of generality that $x_1 < x_2 < \cdots < x_n$
- **Key observation:** $f^*(x)$ is only identifible for $x \in \{x_1, \ldots, x_n\}$
- Equivalent formulation:
 - o Unknown parameters: $f_1^\star \le f_2^\star \le \cdots \le f_n^\star$ (corresponds to $f^\star(x_1),\ldots,f^\star(x_n)$)
 - Observations: one sample per parameter

$$y_i = f_i^{\star} + \varepsilon_i \quad (i = 1, \dots, n)$$

- \circ Goal: estimate $f_1^\star \leq f_2^\star \leq \cdots \leq f_n^\star$
- Questions: (1) How to estimate f_1^*, \ldots, f_n^* ; (2) How to reconstruct f^* ?

Isotonic regression: estimation

• Estimation: solve the following convex optimization problem

$$(\widehat{f}_1, \dots, \widehat{f}_n) \coloneqq \underset{f_1 \le \dots \le f_n}{\arg \min} \sum_{i=1}^n (y_i - f_i)^2$$

to estimate $f^*(x_1), \ldots, f^*(x_n)$

• Reconstruction: the least squares solution

$$\underset{f \nearrow}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(f(x_i) - y_i \right)^2$$

is any increasing function $\widehat{f}(x)$ that interploates (x_i,\widehat{f}_i) for $1 \leq i \leq n$:

$$\widehat{f}(x_i) = \widehat{f}_i \qquad (i = 1, \dots, n).$$

Isotonic regression: convergence rate

Theorem 4.5

Consider the class of increasing function with bounded variation

$$\mathcal{F} = \{f : [0,1] \to [0,1] \mid f \text{ is monotonically increasing}\}.$$

Then the isotonic regression estimate \widehat{f} satisfies

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left(\widehat{f}(x_i) - f^{\star}(x_i)\right)^2\right] \lesssim \left(\frac{\sigma^2}{n}\right)^{2/3}$$

• **Remark:** in comparison, without using the monotonic structure, the squared error of MLE does not decrease as n grows:

$$\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[\left(y_{i}-f^{\star}(x_{i})\right)^{2}\right]=\sigma^{2}.$$

 Reference: Cun-Hui Zhang. "Risk bounds in isotonic regression." The Annals of Statistics (2002)

Convex regression: setup

- ullet Setup: ${\mathcal F}$ is the set of convex function in ${\mathbb R}^d$
- **Key observation:** $f^*(x)$ is only identifible for $x \in \{x_1, \dots, x_n\}$
- Equivalent formulation:
 - Unknown parameters:
 - $f_1^{\star}, \ldots, f_n^{\star} \in \mathbb{R}$ (correspond to $f^{\star}(x_1), \ldots, f^{\star}(x_n)$)

Convex regression: setup

- **Setup:** \mathcal{F} is the set of convex function in \mathbb{R}^d
- **Key observation:** $f^{\star}(x)$ is only identifible for $x \in \{x_1, \dots, x_n\}$
- Equivalent formulation:
 - Unknown parameters:
 - $f_1^{\star}, \ldots, f_n^{\star} \in \mathbb{R}$ (correspond to $f^{\star}(x_1), \ldots, f^{\star}(x_n)$)
 - $g_1^{\star}, \dots, g_n^{\star} \in \mathbb{R}^d$ (correspond to $\partial f^{\star}(x_1), \dots, \partial f^{\star}(x_n)$)
 - \circ Constraint: for each i,

$$f_{j}^{\star} \geq f_{i}^{\star} + {m{g}_{i}^{\star}}^{ op}({m{x}_{j}} - {m{x}_{i}})$$
 holds for all $j
eq i$

Observations: one sample per parameter

$$y_i = f_i^{\star} + \varepsilon_i \quad (i = 1, \dots, n)$$

 \circ Goal: estimate $f_1^{\star}, \dots, f_n^{\star} \in \mathbb{R}$

Convex regression: setup

- **Setup:** \mathcal{F} is the set of convex function in \mathbb{R}^d
- **Key observation:** $f^{\star}(x)$ is only identifible for $x \in \{x_1, \dots, x_n\}$
- Equivalent formulation:
 - Unknown parameters:
 - $f_1^{\star}, \ldots, f_n^{\star} \in \mathbb{R}$ (correspond to $f^{\star}(x_1), \ldots, f^{\star}(x_n)$)
 - $\boldsymbol{g}_1^\star,\ldots,\boldsymbol{g}_n^\star \in \mathbb{R}^d$ (correspond to $\partial f^\star(x_1),\ldots,\partial f^\star(x_n)$)
 - \circ Constraint: for each i,

$$f_i^\star \geq f_i^\star + oldsymbol{g}_i^{\star op}(oldsymbol{x}_j - oldsymbol{x}_i)$$
 holds for all $j
eq i$

o Observations: one sample per parameter

$$y_i = f_i^{\star} + \varepsilon_i \quad (i = 1, \dots, n)$$

- \circ Goal: estimate $f_1^\star,\ldots,f_n^\star\in\mathbb{R}$
- Questions: (1) How to estimate f_1^*, \ldots, f_n^* ; (2) How to reconstruct f^* ?

Convex regression: estimation

• Estimation: solve the following convex optimization problem

$$\begin{array}{ll} \underset{f_1,...,f_n \in \mathbb{R}, \boldsymbol{g}_1,...,\boldsymbol{g}_n \in \mathbb{R}^d}{\text{minimize}} & \sum_{i=1}^n (y_i - f_i)^2 \\ \text{subject to} & f_j \geq f_i + \boldsymbol{g}_i^\top (\boldsymbol{x}_j - \boldsymbol{x}_i) & \text{for all } 1 \leq i,j \leq n \end{array}$$

• Reconstruction: the least squares solution

$$\underset{f \text{ convex}}{\operatorname{arg min}} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

is any convex function $\widehat{f}(x)$ such that

$$\widehat{f}(\boldsymbol{x}_i) = \widehat{f}_i, \quad \widehat{\boldsymbol{g}}_i \in \partial \widehat{f}(\boldsymbol{x}_i) \qquad (i = 1, \dots, n).$$

Convex regression: convergence rate

Theorem 4.6

Consider the class of convex function in \mathbb{R}

$$\mathcal{F} = \{ f : [0,1] \to [0,1] \mid f \text{ is convex} \}.$$

Then the convex regression estimate \hat{f} satisfies

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left(\widehat{f}(x_i) - f^{\star}(x_i)\right)^2\right] \lesssim \left(\frac{\sigma^2}{n}\right)^{4/5}$$

- **Remark:** for convex regression in \mathbb{R}^d , the error is of order $n^{-4/(d+4)}$
- Reference: Adityanand Guntuboyina and Bodhisattva Sen. "Global risk bounds and adaptation in univariate convex regression." Probability Theory and Related Fields (2015)

Reproducing kernel hilbert space

Hilbert Space: Definition

A **Hilbert Space** \mathcal{H} is a complete inner product space over \mathbb{R} , with:

- ullet Vector space: ${\mathcal H}$ is a vector space over ${\mathbb R}$
 - o for any $f, g \in \mathcal{H}$, $f + g \in \mathcal{H}$ (addition)
 - o for any $f \in \mathcal{H}$ and $a \in \mathbb{R}$, $af \in \mathcal{H}$ (scalar multiplication)
- Inner product: a function $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ satisfies:
 - \circ Linearity: $\langle af + bg, h \rangle = a \langle f, h \rangle + b \langle g, h \rangle$
 - \circ Symmetry: $\langle f, g \rangle = \langle g, f \rangle$.
 - Positivity: $\langle f, f \rangle \geq 0$, and $\langle f, f \rangle = 0 \iff f = 0$.
- ullet Completeness: every Cauchy sequence in ${\mathcal H}$ converges to a point in ${\mathcal H}$

Hilbert norm: the norm induced by the inner product

$$||f||_{\mathcal{H}} = \sqrt{\langle f, f \rangle}.$$

Hilbert Spaces: Examples

• Finite-dimensional Euclidean space: for any $x, y \in \mathbb{R}^d$:

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{i=1}^{n} x_i y_i.$$

• Sequence space $\ell_2=\{(x_1,x_2,\ldots):\sum_{i=1}^\infty x_i^2<\infty\}$: for any ${\pmb x},{\pmb y}\in\ell_2$

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{i=1}^{\infty} x_i y_i.$$

• Function spaces: for any given $\Omega \subseteq \mathbb{R}^d$ and measure ρ over Ω ,

$$L^{2}(\Omega, \rho) := \{ f : \mathbb{R}^{d} \to \mathbb{R} \mid \int |f(x)|^{2} d\rho(x) < \infty \}.$$

For any function $f,g\in L^2(\Omega,\rho)$, their inner product is given by

$$\langle f, g \rangle = \int_{\Omega} f(\boldsymbol{x}) g(\boldsymbol{x}) d\rho(x).$$

Reproducing Kernel Hilbert Spaces (RKHS)

RKHS is a space of functions from $\mathcal X$ to $\mathbb R$ (usually $\mathcal X=\mathbb R^d$)

- Positive semi-definite kernel: a symmetric function $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a PSD kernel if, for any integer $n \geq 1$ and $x_1, \ldots, x_n \in \mathcal{X}$, the kernel matrix K defined by $K_{ij} = \mathcal{K}(x_i, x_j)$ is positive semi-definite.
- Examples of PSD kernels: when $\Omega = \mathbb{R}^d$,
 - Linear kernel: $\mathcal{K}(x, x') = \langle x, x' \rangle$.
 - Polynomial kernel: $\mathcal{K}(x,x') = (\langle x,x' \rangle + c)^d$
 - Gaussian kernel: $\mathcal{K}(x, x') = \exp(-\|x x'\|_2^2/2\sigma^2)$.
- **RKHS** is a Hilbert space \mathcal{H} of functions $f: \mathcal{X} \to \mathbb{R}$ satisfying:

$$f(x) = \langle f, \mathcal{K}(\cdot, x) \rangle_{\mathcal{H}}$$
 for any $f \in \mathcal{H}$ and $x \in \mathcal{X}$.

This is known as the **reproducing property**.

Construction of RKHS

Theorem 4.7

Given any PSD kernel $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, there is a unique Hilbert space of functions on \mathcal{X} that satisfies the reproducing property, known as the reproducing kernel Hilbert space (RKHS) associated with \mathcal{K} .

• Step 1: define the function space consists via finite linear combinations

$$\widetilde{\mathcal{H}} := \left\{ \sum_{i=1}^{n} \alpha_i \mathcal{K}(\cdot, x_i) : n \ge 1, x_1, \dots, x_n \in \mathcal{X} \right\}$$

• Step 2: for $f=\sum_{i=1}^n \alpha_i \mathcal{K}(\cdot,x_i)$ and $g=\sum_{j=1}^m \alpha_j' \mathcal{K}(\cdot,x_j')$, define

$$\langle f, g \rangle_{\widetilde{\mathcal{H}}} = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \alpha'_j \mathcal{K}(x_i, x'_j)$$

ullet Step 3: take the complement of $\widetilde{\mathcal{H}}$ to obtain a Hilbert space \mathcal{H}

Examples

• The space of linear functions $\mathcal{H}\coloneqq\{f_{\boldsymbol{\beta}}:\boldsymbol{\beta}\in\mathbb{R}^d\}$ where $f_{\boldsymbol{\beta}}(\boldsymbol{x})=\boldsymbol{\beta}^{\top}\boldsymbol{x}$ equipped with inner product

$$\langle f_{\boldsymbol{\beta}}, f_{\boldsymbol{\beta}'} \rangle_{\mathcal{H}} = \langle \boldsymbol{\beta}, \boldsymbol{\beta}' \rangle$$

is an RKHS associated with linear kernel $\mathcal{K}(m{x},m{x}') = \langle m{x},m{x}'
angle$

ullet The **Sobolev space** consists of absolutely continuous functions over [0,1]

$$\mathcal{H} := \{ f : [0,1] \to \mathbb{R} : f(0) = 0, f' \in L^2([0,1]) \}$$

equipped with inner product

$$\langle f, g \rangle_{\mathcal{H}} = \int_0^1 f'(z)g'(z)dz$$

is an RKHS with kernel $\mathcal{K}(x,y) = \min\{x,y\}$.

RKHS-based estimation procedure

Noiseless case: function interpolation

- **Setup:** an RKHS \mathcal{H} associated with a kernel $\mathcal{K}(\cdot,\cdot)$, unknown $f^{\star} \in \mathcal{H}$
- Data: $(x_1, y_1), \dots, (x_n, y_n)$ where $y_i = f^*(x_i)$ noiseless observation
- **Issue:** there might exist multiple $f \in \mathcal{H}$ that fit these data exactly...
- Remedy: search for the one with minimal RKHS norm

$$\widehat{f}\coloneqq rg\min_{f\in\mathcal{H}}\|f\|_{\mathcal{H}}$$
 subject to $f(oldsymbol{x}_i)=y_i$ for $i=1,\ldots,n$

• Thanks to the reproducing property, this optimization problem can be solved using the kernel matrix $K \in \mathbb{R}^{n \times n}$ where $K_{ij} = \mathcal{K}(x_i, x_j)$

Theorem 4.8

Any optimal solution \widehat{f} can be expressed as

$$\widehat{f} = \sum_{i=1}^n \widehat{lpha}_i \mathcal{K}(\cdot, oldsymbol{x}_i)$$
 where $oldsymbol{K} \widehat{oldsymbol{lpha}} = oldsymbol{y}$

Noisy case: kernel ridge regression

- Data: $(x_1, y_1), \dots, (x_n, y_n)$ where $y_i = f^*(x_i) + \varepsilon_i$ with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Kernel ridge regression: solve

$$\widehat{f} := \underset{f \in \mathcal{H}}{\operatorname{arg \, min}} \sum_{i=1}^{n} (y_i - f(\boldsymbol{x}_i))^2 + \lambda ||f||_{\mathcal{H}}^2$$

ullet Recall the kernel matrix $oldsymbol{K} \in \mathbb{R}^{n imes n}$ where $K_{ij} = \mathcal{K}(oldsymbol{x}_i, oldsymbol{x}_j)$

Theorem 4.9

The unique solution \widehat{f} to kernel ridge regression is

$$\widehat{f} = \sum_{i=1}^n \widehat{lpha}_i \mathcal{K}(\cdot, m{x}_i)$$
 where $\widehat{m{lpha}} = (m{K} + \lambda m{I}_n)^{-1} m{y}$

Eigendecomposition of PSD kernel

- **Setup:** consider $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ where $\mathcal{X} \subseteq \mathbb{R}^d$ is compact, let ρ be a non-negative measure over \mathcal{X} (e.g., Lebesgue measure)
- Define a linear operator: for any $f: \mathcal{X} \to \mathbb{R}$,

$$\mathcal{T}_{\mathcal{K}}(f): oldsymbol{x}
ightarrow \int_{\mathcal{X}} \mathcal{K}(oldsymbol{x}, oldsymbol{z}) f(oldsymbol{z})
ho(\mathrm{d}oldsymbol{z})$$

• Mercer's theorem: under certain regularity conditions,

$$\mathcal{K}(\boldsymbol{x}, \boldsymbol{z}) = \sum_{j=1}^{\infty} \mu_j \phi_j(\boldsymbol{x}) \phi_j(\boldsymbol{z})$$

where

- $\circ \{\mu_i\}_{i=1}^{\infty}$ is a sequence of non-negative eigenvalues
- $\circ \ \{\phi_i\}_{i=1}^{\infty}$ are the associated **eigenfunctions** from \mathcal{X} to \mathbb{R} satisfying

$$\mathcal{T}_{\mathcal{K}}(\phi_j) = \mu_j \phi_j \quad (j = 1, 2, \ldots)$$

 $\circ \{\phi_i\}_{i=1}^{\infty}$ forms an orthonormal basis of $L_2(\mathcal{X},\rho)$

Examples

• Sobolev space: $\mathcal{X} = [0, 1]$, $\rho = \text{Lebesgue}$,

$$\mu_j = \frac{4}{(2j-1)^2 \pi^2}, \quad \phi_j(x) = \sin \frac{(2j-1)\pi t}{2} \quad (j=1,2,\ldots)$$

• Gaussian kernel: consider $\mathcal{X} = [-1, 1]$, $\rho = \text{Lebesgue}$,

$$\mu_j \simeq \exp\left(-cj\log j\right)$$

for some universal constant c > 0; no explicit formula for eigenfunctions

 The decay rate of eigenvalues determines the "expressive power" of RKHS (the slower the larger), and hence the convergence rate of KRR

Compare slow decay
$$\underbrace{\mu_j \asymp j^{-2}}_{\text{Sololev}}$$
 vs. fast decay $\underbrace{\mu_j \asymp \exp(-cj\log j)}_{\text{Gaussian}}$

An explicit characterization of RKHS

The RKHS associated with kernel $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with eigendecomposition

$$\mathcal{K}(oldsymbol{x},oldsymbol{z}) = \sum_{j=1}^{\infty} \mu_j \phi_j(oldsymbol{x}) \phi_j(oldsymbol{z})$$

can be expressed as

$$\mathcal{H} = \Big\{ f = \sum_{j=1}^{\infty} \beta_j \phi_j : (\beta_j)_{j=1}^{\infty} \in \ell^2, \sum_{j=1}^{\infty} \frac{\beta_j^2}{\mu_j} < \infty \Big\}.$$

For $f, g \in \mathcal{H}$, their inner product can be expressed as

$$\langle f, g \rangle_{\mathcal{H}} = \sum_{j=1}^{n} \frac{\langle f, \phi_j \rangle_{L_2(\mathcal{X}, \rho)} \langle g, \phi_j \rangle_{L_2(\mathcal{X}, \rho)}}{\mu_j} = \sum_{j=1}^{n} \frac{\beta_j \beta_j'}{\mu_j}.$$

where

$$f = \sum_{j=1}^{\infty} eta_j \phi_j \quad ext{and} \quad g = \sum_{j=1}^{\infty} eta_j' \phi_j$$

Applications to kernel ridge regression

- Setup: $x_1, \ldots, x_n \overset{\text{i.i.d.}}{\sim} \rho$, $y_i = f^{\star}(x_i) + \varepsilon_i$, $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Unknown $f^\star \in \mathcal{H}$, suppose access to some $R \geq \|f^\star\|_{\mathcal{H}}$
- Suppose that the eigenvalues of the kernel $\mathcal K$ under ρ are $\{\mu_j\}_{j=1}^\infty$
- Let $\delta_n > 0$ be some quantity satisfying

$$\sqrt{\frac{2}{n}\sum_{j=1}^{\infty}\min\{\delta_n^2,\mu_j\}} \le \frac{R}{\sigma^2}\delta_n^2$$

Theorem 4.10

By taking $\lambda \asymp n\delta_n^2$, then the KRR solution \widehat{f} satisfies

$$\mathbb{E}_{\boldsymbol{x} \sim \rho} \left[\left(\widehat{f}(\boldsymbol{x}) - f^{\star}(\boldsymbol{x}) \right)^{2} \right] \lesssim R^{2} \delta_{n}^{2}.$$

Examples

• Gaussian kernel: $\mu_j \asymp \exp(-cj \log j)$, one can check that

$$\delta_n^2 \asymp \frac{\sigma^2}{nR^2}$$

This suggests that KRR with Gaussian kernel converges at order $O(n^{-1})$

- the RKHS associated with Gaussian kernel is not very large
- Sobolev space: $\mu_j \asymp j^{-2}$, one can check that

$$\delta_n^2 \asymp \left(\frac{\sigma^2}{nR^2}\right)^{2/3}$$

This suggests that KRR in Sobolev space converges at order $O(n^{-2/3})$

- the Sobolev space is much larger
- In practice, the eigenvalues of $n^{-1}K$ concentrates around corresponding population-level eigenvalues $\{\mu_j\}_{j=1}^{\infty}$